CM0711
SOFTWARE DEVELOPMENT KIT (SDK) USER MANUAL

Publ. no HY33-4201-SM/UK
Edition 8/2017

Mobile Hydraulic Systems Division Europe CM0711 SDK User Manual

http://www.parker.com/
http://www.parker.com/�

Header Link to TOC

& WARNING!

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR
SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY
AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and
authorized distributors provide product and/or system options for further investigation by users having
technical expertise. It is important that you analyze all aspects of your application and review the
information concerning the product or system in the current product catalog. Due to the variety of
operating conditions and applications for these products or systems, the user, through its own
analysis and testing, is solely responsible for making the final selection of the products and systems
and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs,

availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at
any time without notice.

Offer of Sale
The items described in this document are hereby offered for sale by Parker Hannifin Corporation, its
subsidiaries or its authorized distributors. This offer and its acceptance are governed by the
provisions stated in the "Offer of Sale".

Parker Hannifin Manufacturing Finland Oy
Mobile Hydraulic Systems Division Europe
Electronic Controls Business Unit
Lepistdnkatu 10

FI-30100 Forssa, Finland

Office +358 20 753 2500

http://www.parker.com/ecd

Copyright 2011- 2017 © Parker-Hannifin Corporation. All rights reserved. No part of this work may
be reproduced, published, or distributed in any form or by any means (electronically, mechanically,
photocopying, recording, or otherwise), or stored in a database retrieval system, without the prior
written permission of Parker Hannifin in each instance.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 2 of 112

http://www.parker.com/

Header Link to TOC

Table of Content

AR 1 40 To 1V o o] o [P0 8
1.1, Safety SYMDOIS.uiiiiiiccirreereeteiriicecsrneeereeeessessssssnneressesssssssssssssesessssssssssssnnnenesssssssns 8
I 1 1= T - | APPSR 8

2. CMO0711 Software Development SYSteMccceviiriiicisssneeneninsnnissssssennnnsssssssssnns 9

3. Description of CM0711 Software Development Kit......cccccevvieciireeeveeenninssnnnnns 10
3.1. Software Development Kit Ordering NUMDEreeereeeeiiicccierrreeeeerccccneeereeeee, 10
3.2, DOCUMENTALION wuueeereeeeriieeeerrrenreeeessissessssnnnereessssssssssssnsssesssssssssssssnssssesssssssssssannnesssses 10
3.3. CMO0711 Platform Framework (PFW)eeceiiiicccrrnenreeeessissecssssnnnessessssssssssssnnessesss 11
1 N o1 01 o3> 4 o] o N 12

3.4.1. PN o] o] oz= 1uT0 TR (=10 0] 0] = L= TSRS 12
3.4.2. L0 LYY =T o] o] [T 1o 1o HOU SRR 12
3.5. Integrated Development Environment (IDE)cccccveiiiiiiiiiiinnnnenniniinsssnnnnnnenssnns 12
3.6. Software Development TOOIS .. eiiiiiiiniinerenenissscsssssesessssssssssssssssssssses 13
K J SR = Yo To1 4 o] Lo To] QPRI 13

A, Wi HAINESSES cciiiieiiiieieieieetieeeeeeeeseseeeseseessssssessssssssesssesssssssssssssesssssssssssssssssssnsnnns 15

5. Development Environment Setup Procedure.....cccccvvveeeeeeerrreccccssnneneennnssssnnnns 16

6. General Info for Application Development with CM0O711 SDK.......ccccceevruneees 17
6.1. Services Provided by CMO711 SDKccovveiiiiivuiiiininsnreniinnneesinnseesssnneessssseesssns 17
(I o =T Lo [=T g 1 1= RPNt 17
6.3. Manual CONVENTIONS ciiiicceerreeereeeeiiiecessrnereresesssesssssssnessessssssssssssansesessssssssssssannneseases 17

6.3.1. (070 Lo [N =1 {1 =T (ot =TT O RRTSRR 17
6.3.2. COAE EXAMPIUES ...ttt st b e st ea et e e te st e sbesaeebe et et et eneenbesaea 17

7. Mandatory Steps to Create an AppliCatioN ..cccccceceeeereerriiisssssienrenensisssssssssnnnnns 19
% O = o Tod=To LU - DS TPTRR 19

8. Product-Specific INTOrmMatioN.......cceiiriricciireerieiiniisicsiiiineesssssssssssnnneesesssssssnns 20
8.1. CMOT711 MEMOIY MaAP iiiiiiiririiiiiiiiiieniieieiiseisseseesesesneeseesesesesesesssasssssssssssssssssssssssesesnes 20
8.2. FIXEU AUUIESSES eereeieriiiecerrnenrteeetiissesssnnnnreessssssssssssssssesssssssssssssnssssessssssssssssnnnsnenees 21
8.3. CMO711 SOftware Parameters ...iiiccccercceeeeeeeesiecsessennreeessssssesssssnsesessssssssssssanssssessss 22
8.4. Building and Compiling YOUT PrOJECT aeuuuiiiiiiiicerrrenreeeerriisecsssnennreeeesssssssssssnnessesss 24

8.4.1. Making your application compatible with the Parker Flash Loader Tool.......................... 24
8.4.1.1. Including reprogram_object in your receive table.........cc.ccocoevevenniiiiscicieieeee e, 25
8.4.1.2. Defining application callback fuNCtiONScccceviiivi i 26

8.4.1.2.1. change_operating_mode_reqUESLEMcccevuererireeeeieieere e 26
8.4.1.2.2. version_NUMDErS_FeQUESIEM........coiriiirieeieeiereee et 27
8.4.1.2.3. send_bootblock reset iNfO.........ceiieiiiiice e 27

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 3 of 112

http://www.parker.com/

Header Link to TOC

8.4.1.2.4. custom_J1939 EFO0 _ hanIEr......ccoocoiiiiieiieeeceeeeeteee ettt 28
8.4.1.3. Including version_numbers in your transmit tablecoccocerininininnieeeee, 28
8.4.2. Building an object file (Parker Software Fil€)..........cccccvveeieieieeee e 29
8.4.3. Transferring a VSF to the CM0711 with the Parker Flash Loader Toolccccceunueee. 30
9. SYSIEM LiDIaAry cccccccceeeeeiiiieniiiienietisissicccssneneeeeesssssssssssnnssessssssssssssssnsssssssssssssnns 32
0.1, SEIVICES ciiiiiiiiiiirinnrtriiiiisiissisansteessssssessssssssessssssssssssssasssesssssssssssssssssesssssssssssssnnsssases 32
9.1.1. Initializing the apPliCALION.........ccceeieeeieee et r e 32

LS 20 I - Y o | SO 32
9.1.2. DeterMiNINgG Mouieieeeeeee ettt ettt et et sae b e et eat et e s e naestesbeee 32
.12 1. TICKS ettt ettt be bt bt aeea e et et e beeeeebeeaeeat et et e tesaents 32

Lo T O (o (T U SRR 33

O I o == o [I o = oY 34
10.1. Types Of TRreadS . cucvieiiiiiieiiiiiittiicntecscite st ase s sas 34
10.2. HOW 10 WIITE ThrEadS. iiiiicciiieerrniiiiiiicinennrenissiesssssssssesssssesssssssnsssssssssssssssssnnns 34
L0.2.1. SEIVICES...iiuiieteitieeuistete sttt sttt sttt ettt e st a et e st b et e st et e b e st s b e b es e e b et e st e b et e st et et e st e be b eneenenbenes 35
10.2.2. Creating @ thrEadccccuevieviiriieceeieeere ettt sttt et st s te s reeseeseessesse st e sne e 35
10.2.2.1. fOrK _thr@adcvecieiecieeeeeeeee ettt st e et ee s e sne e 35
10.2.3. Terminating @ thrEadcoooiiiiiee ettt sttt e 36
O T I = (| a1 41 (== o [OOSR 36
10.2.3.2. Kill_tRIEAGc.eieeeieee ettt ettt et e et e et e e ta et e e be et e enteeateeneas 37
10.2.4. Changing the period for athread...........ccocevviiieieieeese e 37

I B2 ot S ¢ 1 1= Y= To [=T £ T TSP 37
10.2.4.2. Changing a thread Parameterc.ccccvevevieieresese ettt 38
O o T (1 (=Y Lo [o =T = 10 1= (= RSP 38

11, OULPULS LIDFArY ceveeeiiiciiiieiiieiiiiiisisiieinisssisssssssssnesssssssssssssssssssssssssssssssssssnsnns 39
11.1. Y= YT o] T 39
11.1.1. Controlling the Pulse Width Modulation (PWM) of QULPULS........cccceoerirerienieieeieree 39
11.1.1.1. set_output_ PWM_fTEOUENCYcc.ovuiiieiiieieeriesiese ettt 39
11.1.1.2. set_output PWM_dULY _CYCIE......ccoiuiiieieeeee e 40
11.1.2. Controlling an Output DIgitallyccceieririiiiieieeee e e 40

5 0 2 A (1 o o 111 11 o TP 41
11.1.2.2. tUIN_OULPUL Off oottt sttt et b 41
11.1.3. Determining the State of an Output Channel...........ccoiviiiiiiecieiiee e 41
11.1.3.1. get _OULPUL_STALE ...cueiieiiiieieeeet ettt st sb et ettt b e e be e b e beseesaeas 41
11.2. OULPUL OPLIONS ceriieiiccccenrreeeerisiessssnenereeesssssssssssnnesessssssssssssnsseessssssssssssnnsesesssssssnss 43
5 02 I @ 1 U1 o 1V | o] 4o 1< SO TSRS 43
11.3. Output Critical Fault INhibit DiSable.....ccivivviiiiiiiiiiinieiiinceeee e, 44
11.3.1. output_critical_fault_inhibit_disabled ..o 44
12, INPULS LIDFAIY ceveeeeeiiiicccieeieetiisisiccscinineesssssssssssssnensssssssssssssssssssssssssssssssssnnsnns 46
12.1. SEBIVICES tiiicieeeritiiiiiiiisnetrettesssessssssssesssssesssssssssssessssssssssssanssassssssssssssssnssessssssasss 46
12.1.1. Determining the value of digital INPULS..........ccecirieieiiicee e 46
2 O Ot o =Y o L1 7= [1= 3RS 46
D2 O A (=Y To [o 1 T 110 - R RP 47
12.1.2. Determining the value of freqUeNCY INPULS.........cccevvevievinirie s 47
12.1.2.1. gL fIN_VAIUE ..ottt et ettt st 48
12.1.2.2. 1880 _fIN_VAIUE ..ottt sttt et e et beeaaeeanas 48
12.1.2.3. get_fiN_ PO ...ttt sttt b e sbe e 49
D2 2 S (Y- Uo [11 T 1= o o TSP 49

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 4 of 112

http://www.parker.com/

Header Link to TOC

12.1.2.5. gL fIN_COUNT ..ottt s sb et ea et ae st sae e 50
12.1.2.6. 1€A0_fIN_COUNL....coiiiieeeceeeee et sttt e st a et e e beebeeneeennas 51
12.1.2.7. get_fin_dULY CYCIE ..ot 51
12.1.2.8. re@d_fiN_AULY CYCIE...cciiieeieieeeeecee ettt st 52
12.1.3. Determining the value of analog iNPULScccceeieieiiiisece e 52
12.1.3.1. get_buffered_ain_ValUe..........ccooiriiieieiceeese et 53
12.1.3.2. get_realtime_ain_ValU@cccooiriiiiiiieeeeee et 54
12.1.3.3. read_buffered_ain_ValUEcocvieiiiieieeeeeee ettt e 54
12.1.3.4. read_realtime_ain_ValUB..........cccociiiiiiieieeeeeee ettt e 55
12.2. INPUL OPLIONS tiicccereeereeresiieccerenerereeesssessssssnnreseessssssssssssnneessssssssssssnnsssessssssssssssnnns 55
D2 =T o [T T o) o 1T o OO TSRS 56
D2 1= - U1 T o) o] 1] o ISR 56
D2 T Y=Y A 1 T o) o 1 o] o I TSR 57
13. CommuNIiCatioN MeI8.....cceirrirrerrrriirniriiiiinisisiiiiessssiinnsssssssnsssssssssnssssssssnsses 59
13.1. SEBIVICES tiiiiieeeritiiiiiiiiiinntrtttssssessssanssesssssessssssssssseasssssssssssasssassssssssssssssnssessssssssss 59
0 0 = - Vo A 5 RSP 59
13.1.2. iNitiate traNSMISSION......icciiiie ettt et s st e st e et e et e e b e saaesbaesbeebeenseenreennas 59
13.1.3. inSert_receiVe_CAN_IMESSAQEcccueierierierientesieettetetesee e stesteeteeteeeseeseesbesaeebeeneensenseseesaeses 60
13.1.4. set CAN_OffliN€ MOUE......coo ettt et e 60
13.1.5. change _CAN_DIt FAEE.....ccoiiiieee ettt st be ettt ae e 61
14, J1939 StacCK LiDrary ceccccvccceeeeeirsieiisiseiiieniisssiscssnennenesssssssssssnnnnssssssssssssssnnnnns 63
14.1. Overview for Using the J1939 Stack Library......cceniniieeeniiineeciniineecnnnn, 63
14.2. INitializing the StaCK ...cccviiiiiiiiiiiiieeite e 63
14.3. Creating J1939 TabIES ..ccicveiiiiiiiiiiiiiteinieee s sase s 64
14.3.1. Creating a tranSmit tabIE.........coccviieieieee et 64
14.3.2. Creating @ reCeIVE taDIE........ccociieeieeee ettt st e 65
14.3.2.1. Defining reCeive fUNCHONS.........cciviiieeceeeee et 65
14.3.2.2. Creating a reCeive table ..o e 68
14.4. Y= T o] T 69
14.4.1. Managing the J1939.......o ettt b et ettt b e b bttt e e et e b e 69
14411, j1939 QNItIAlIZE_SLACK......eiieeeieieeeeet e 70
14.4.1.2. j1939 Claim_addreSS......ccccveviereiiciisieeeeieeeese ettt st ressa e e b sesresre e 71
14.4.1.3. J1939 g1 STAIUS....icieieeeieieere sttt ettt e sttt sr et e reera et e b e benrenre e 72
14.4.1.4. j1939 get SOUICE_AUUIESS ...cceiiiieieiieeectieteere sttt st se e sne e 72
I o T N R 1 e T Y= Lo [(=T o {8 =] A TSRS 72
14.4.2. TranSMIttNG MESSAGESuereruirteriietieieiterteste st sttt et etestestesbesaeese et ensenteseesbesaesbeeneensensessesseses 73
14.4.2.1. Transmitting messages automatically...........cccooeveririiiieienenere e 73
14.4.2.2. Transmitting messages manually (J1939_Send)........cccceeevenrninenenienieneeseeene 73
14.4.3. Updating data in automatically transmitted MeSSAgES......ccccevvevieviereririeseeieeeeese e 74
14.4.3.1. J1939 UPdAtiNg MESSAQE.ccerirrirrerrieteeeeieriestesiestestesseessesaessessessessessessseseessessessensenes 74
14.4.3.2. J1939 finished _updating_MESSAQE........cccevererirerieieeetereese et 75
14.4.4., RECEIVING MESSAGES ...ccveverrirrirteiteeteestestestestestesseaseestessessessessessesseessessessessessessessssssessessessessenns 75
14.4.4.1. J1939 register_receive_all_ODJeCt..........cooiiiiiiiiee e 76
14.4.5. Administration MeSSAQE SELHNG.......eerieieririre et 76
14.45.1. j1939 set_admin_msSQg_ON_tranSMit..........cccoooiririrerieiieieriere et 76
14.4.5.2. j1939 set_admin_msg_on_transmit_COMPIELE......ccccevvevievererirseseeeceeeeere e 77
15. Generic CAN SEACK ..cccvvvvveeriiiisiiiiiiciiiirinssiirssssssitessssssssssssssssssssssssssssssssnsss 78
15.1. Overview for Using the Generic CAN StacK......cccccevevveeeiiiiseeeiiinnineessisieecnnnnn, 78
15.2. Initializing the Generic CAN StacCKccoccceriiiiiiiiiiiiierieinininceereecs s saennes 78

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 5 of 112

http://www.parker.com/

Header Link to TOC

15.3. Creating STD TaDIES ..eeeeriiiiccrrerreeresrrcccssnnreeessssseessssnnreeesssssssssssnnsenesssssasnns 78
15.3.1. Creating a transmit table for standard MeSSAQEScceverererierieiererere e 78
15.3.2. Creating @ reCeIVE taDIE........cccociieeieieee ettt e 80

15.3.2.1. Defining reCeive fUNCHONS.........ccceciiieeciceee ettt 80
15.3.2.2. Creating @ reCeIVE tabIEcc.ccevieieeeceee e 81

15.4. SEBIVICES tiiiiireeeritiiiiiiiiinerrtettsssesssssasssesssssesssssssssssessssssssssssasssasssssssssssssssnsessssssssss 82
15.4. 1. ML CAN _STACK .. it et s et e b e et e e ab e s aa e s be e te e teenreeareeneas 82
15.4.2. TranSMIttNG MESSAQGESuerueruirterieetieteterterteste sttt et et e testesbesaeebeeeentesseseesbesseebeeneensensensesseses 83

15.4.2.1. Transmitting messages automatically...........cccoceririiiriieienenere e 84
15.4.2.2. Transmitting messages manually (send_can_mesSage)......cccccecererereeneenieseeneennenne 84
15.4.3. Updating data in automatically transmitted MeSSAgES......c.ccecvervevieririreeeeeeieiese e 84
15.4.3.1. updating_Can_MESSAQEcververiirrirreereerieieiestestestesresteeseessessessessessessessesssessessessessensenns 85
15.4.3.2. finished_updating_Can_MESSAQJEccccvevverierierireseseeeeeete et e e e s 85

G T [101 1Y/ =T = T] 86

16.1. OVEIVIBW uiineeeriiiiiiiiiisssenseessssiesssssssssesssssesssssssssssessssssssssssasssssssssssssssssssssassssssssss 86

16.2. Creating an INpUt Table ittt 86

16.3. Initializing the INPUL MaNAQET ...uiiiiiiiiicerrerreererrieccssrnnreresessseessssssnsesessssssessssnnnnes 88

16.4. Obtaining Sampled, Filtered, and Converted Data.......cccccceeeerriecccrrneenrenennnenns 89
16.4.1. Getting input data by referring to a data storage location...........cccccocevevenieniniieienenennn 89
16.4.2. Getting input data by calling input_get_Value...........ccooeriiirenieieeeee e 90
16.4.3. Getting input data by using a SPECIfiC SEIVICEccooririiiririieeeree e 91

16.4.3.1. INPUL_gEL TAW _VAIUEocuveeieieieectecteeectete ettt ettt b s e b e e 91
16.4.3.2. input_get filtered ValU@........ccooieiiiieiciceeeese e 91
16.4.3.3. input_get_CONVEEA VAIUEccocueeiieeeieeeeeee et 92
16.4.4. Commonly used read, filter and CONVErSIioN SEIVICES........ccccecveieiererireeeeeeeerese e 92
16.4.4.1. read DIt _UCNAI8ooeieeeeeeceee ettt sttt ettt et e beeaaeennas 92
16.4.4.2. read_bit_uintl6, read _bit UINt32coooiiiiiieeee e 93
16.4.4.3. read _buf UCRAIS8 ..ottt e 93
16.4.4.4. read_buf uintl6, read _buf UINt32cc.coveiiiiiiiiceeeeeee e 94
16.4.4.5. din_debounCe itcveieieiicece e 94
16.4.4.6. TUNNING_AVETAGE ..evecveeeeeeeeeieiesiesiestesteeseeseestessessessessessessessesssessessessessessessesssessessessessessenns 95
16.4.4.7. cONVErt_lINEAr_SINt32cuvouiiieiee ettt st ae e ee e 95
L7, FLASH ettt ceeerettce e ettt se e se et ssesseessssssssnssssssnnsssssssnssssssssnssssnssnnnns 97

0 O © V= Y = 97

17.2. Flash FUNCLIONS ettt sss s s ne s 97
17.2. 1. FlASH NIt ..o et s s st et e et e e e e ab e ba e be e beereeareeneas 97
17.2.2. flASH WO ..ottt e s te et e et e et e e b e staesba e beenbeenteearesnnas 98
17.2.3. flASN _TEAM ...ttt et e e s e st e et e beeteeareeneas 98
17.2.4. flaSh_BrasS@ _SECIONccucceviieiieecieieteteste ettt sttt et et e st e stesreesaeseessessenseneeens 99

18. EEPROM EMUIALION ceerriiiiiiiiciiiiniiiiiensscienssssiissssssiessssssssssssssssnnsssssnnns 100

18.1. OVEIVIBW riiieneeriiiiiiieisienetsesssissessssssnssessssssssssssssssssssssssssssssssssssesssssssssssssnsssasses 100

18.2. Initialize the EMUIAtiON .ooeeriiiiiiicieerrnnnnnsnceeeresssssssssssssssessssssssssssannns 100
18.2.1. EEPIOM _INIT..eiiiiiisiisiiseceettet et e et te e eete e e et et et e st e testesteeseesaessessessestesseeseasaessessessassensensens 100

18.3. WIItE RECOIUS ciiiiiiiiieeriiiiiiiiisnenntensss s sssssssses e s sss s s sssssnssesssssssssssannsssessssssssss 101
18.3.1. €eprom_WIEERECOIUcccecieieieiesiestiseeee ettt sttt st st teeseesae e essesessesrenrens 101

18.4. [TET=To B =T o] 0] o T 102

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 6 of 112

http://www.parker.com/

Header Link to TOC

18.4.1. €epPromM_GEIRECOIMc.ocuiiieeieeee ettt sttt eae et e et e 102
18.5. =T L=y =T o] 0] o R 102
18.5.1. eeprom_DeletERECOINcc.coiiieiee ettt sttt st eat et et e e e be e 103

19. Cyclic RedundancCy CheCK....ccceeccerrveerririririieicrsennrennsssssssssssnnnssesssssssssssnnnns 104
L1O.1. OVEIVIBW uueriiiiineeiiiiieeeiisssseesssssssesssssssssssssssssessssssssesssssssssssssssssssssssssessssssssesssns 104
19.2. CRC FUNCHIONS cetttiiiiiieinneereeesiiisisssssnstessssiesssssssssssesss 104

I B2 0t S o (o3 K ST o= [U1 = 4o) o RS 104

I B A 1 1Y o A o] (o RR S P 105

I B O T [~ o { o o G TR 105

20. Application Parameter Table SUPPOIt....iiirrecicrrrrereeeeeirssicissnneeenesessssenns 107
20.1.1.1. get_application_pararmeter_table_Version...........cccccecvevieverenesesceseeeeeesese s 107
20.1.1.2. get_application_pararmeter_table_build_number.............cccoovriiiininiiiniii 107
20.1.1.3. get_application_pararmeter_table_part nUmMbErcccoooenirinininieneeee 108

21. Application Debug and DiagnoStiCS AUPPOIt cecceveeerreerrrisssssrsnnnennnssssssanns 110
21.1. MAX_STACK _USAQEC . .ccrreeereerrrriererrrennneeessisseesssssnnreesesssssessssnsssesssssssssssssnnsenessssssanss 110
22. Frequently Asked QUESTIONS....ccciiiicccireerreniiiiiiiiiiiineessssssssssssssnnessssssssssnns 111
P2 TR =TT 1 o = o PN 112

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 7 of 112

http://www.parker.com/

1.1.

1.2.

Header Link to TOC

Introduction

These instructions are meant for initial information and guidance for Parker
CMO0711 controller module application software development for the vehicle
manufacturer's design, production and service personnel.

The user of this manual should have basic knowledge in the handling of
electronic equipment.

Safety Symbols

Sections regarding safety, marked with a symbol in the left margin, must be read
and understood by everyone using the system, carrying out service work or
making changes to hardware and software.

The different safety levels used in this manual are defined below.

WARNING

Sections marked with a warning symbol in the left margin, indicate that a hazardous
situation exists. If precautions are not taken, this could result in death, serious injury
or major property damage.

CAUTION

Sections marked with a caution symbol in the left margin, indicate that a potentially
hazardous situation exists. If precautions are not taken, this could result in minor
injury or property damage.

NOTICE

Sections marked with a notice symbol in the left margin, indicate there is important
information about the product. Ignoring this could result in damage to the product.

General

Contact the manufacturer if there is anything you are not sure about or if you have
any questions regarding the product and its handling or maintenance.

The term "manufacturer" refers to Parker Hannifin Corporation if not otherwise
stated.

CodeWarrior® is a registered trademark of Freescale semiconductor.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 8 of 112

http://www.parker.com/

Header Link to TOC

2. CM0711 Software Development System

Figure 1: General overview of Software development environment for CM0711. (PC, IDE & Power supply
are not included into SDK delivery of Parker).

P C PC with

IDE and
USB-DLA
drivers

USB L 1
Port

10-cabling:
CIOB JP1 /JP2
9
CM0711 C1 & C2

usB CMO0711
Data Link i “““““““““““““““““ | (=] 1.1 1]
Adapter 50 0000 cos g8
O O O O O O @) @9
O OO O OO O %% |
O O O O O O @) 09 i
O O O O O @ 69
O © @ @ 1
O O O O O O @ @ i
CAN O 0 @ @
O O O O O o ©
@)
O O O O O & & CANZ
O OO O O O
O O O O s
O O O O O O O O E|
O O O O O O O O

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 9 of 112

http://www.parker.com/

Header Link to TOC

3. Description of CM0711 Software
Development Kit

Figure 2: Software development system elements for CM0O711. Controller /O board needed for testing
and validating the developed application is not shown here.

PC with Framework, IDE & Data Link Adapter CMO0711 module
Software development tools

Documentation

User

Framework et
application
Library & C source & Framework + User application
header files header files . .
) Communication —
Integrated Development link
Environment (IDE) Bootblock

Object file

Software development Tool(s)

*

3.1. Software Development Kit Ordering Number

Parker offers software development kit for CMO711 controller module:

Table 1: Ordering numbers

Parker ordering number Description Note
88SDKO0711 Software Development Kit (SDK)
88SwW0711 SDK Software CD
88CIOB0711 Controller /0 Board Kit

3.2. Documentation

Following documentation is provided with Parker CM0711 Software Development
Kit (88SDK0711)

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 10 of 112

http://www.parker.com/

Header Link to TOC

e CMO0711 SDK User manual: HY33-4201-SM/UK

0 Purpose of this document is to be a handbook for developers and
guidebook in the start-up phase of the development.

¢ CMO711 Instruction Book: HY33-4201-1B/UK
0 HY33-4201-IB/UK specifies the CM0711 hardware
e CMO0711 SW reference manual: documentation.chm

o0 SW reference manual is to be a quick reference for application
developers for daily work. It is a bit more coverable and allow
developer to search information little bit faster allowing to search
information of functions, variables etc. in many ways and lists a file
content of the SDK package.

Following reference documentation relates to devices that are included into
complete CM0711 SDK delivery package. It is recommended to download the
latest versions of below mentioned documents from Parker Web - site.

e Controller I/O board user manual: HY33-5009-1B/US (UM-CIOB-913001-
00B-201003-01)

¢ Installation sheet for Data Link Adapter: HY33-5010-IS/US (IS-USBDLA-
201107-02)

e Data Link Adapter user manual: HY33-5010-1B/US (UM-USBDLA-
779A06-1.0-201006-02)

3.3. CMO0711 Platform Framework (PFW)

CMO0711 platform framework (PFW) provides for application developer a software
interface, which allows to control CM0711 module and get information about its
state.

The platform framework consists of a collection of binary library and C/C++
header files, which include software interface functions. These functions allow
application software to read inputs states, set and read output states,
communicate with other modules via CAN bus and setting periodically executable
tasks.

In addition to PFW binary library and header files software developer needs
C/C++ compiler for MPC55XX microcontrollers. Application developer needs to
use suitable development environment with CM0711 SDK - see recommended
environment in chapter 3.5.

Download tool is also required for programming developed and compiled
application software to CM0711 module via CAN bus — see chapter 3.6 for more
information.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 11 of 112

http://www.parker.com/

Header Link to TOC

3.4. Application

3.4.1. Application template

Application template is provided with CM0711 Software Development Kit.
Purpose of the template is to help the user application developer to get started
with CM0711 application development.

Template consists of a file package and the actual editable files:
e hw _user.h
e hw_user.c

For more information, please see the document: CM0711 Application template
project_V1 02 (or newer) included in the CM0711 SDK SW package
documentation.

f\y NOTICE

Remember to place the needed definitions into the application project -file
hw_user.h allows the use of desired services in your application.

3.4.2. User application

The user application is the end application, which is developed by means of
CMO0711 Software Development Kit and suitable compiler.

User application combines both application and framework files into dedicated
application for the CM0711 product.

It is a collection of C-source and header files that CM0711 application developer
create to take advantage of the services available in the framework to make
CMO0711 function as required in the application environment.

See example of simple LED blinking application in chapter 6.3.2

r\i-l') NOTICE

Actual user application is not included in the CM0711 SDK. It shall be developed by
the customer or by request of the customer.

3.5. Integrated Development Environment (IDE)

IDE is third party tool used to compile source files for the purpose of generating
object files, which can be then executed in the CM0O711.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 12 of 112

http://www.parker.com/

Header Link to TOC

NOTICE

IDE is not provided by Parker as it’s a third party development tool. it shall be
separately acquired by the customer or application developer who develops user
application for CM0711.

Typical content for the IDE is following:
e Source file editor
o Compiler

IDE is usually product specific. Recommended IDE for CM0711 is Freescale

Code Warrior ® —professional (although other IDEs may be used also). Ensure
the correct compiler version for MPC5604 processor from Freescale or its
distributors.

NOTICE

After IDE is installed, you must enable following settings:
Edit - Preferences = General = IDE Extras = Use text based projects

(This guidance concerns the Freescale CodeWarrior -IDE)

NOTICE

If other IDE is used than the one mentioned above, then suitability for MPC5604
shall be ensured. Note also that IDE settings may differ in IDE’s from other supplier.

3.6. Software Development Tools

These are provided by Parker to help customer to develop an application for
CMO0711. The Parker Flashloader tool and ECU-tester application are examples
of these kind of tools.

3.7. Bootblock

The bootblock is provided by Parker and it's already located in CM0711 module’s
internal flash memory.

Bootblock contains specific bootloader for CM0711. This bootloader is
responsible for facilitating the programming of user application and framework
from PC to CM0711.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 13 of 112

http://www.parker.com/

Header Link to TOC

«"ﬁ CAUTION

Bootblock should not be needed to reprogram afterwards into the modules. Be
precautious with Controller I/0 board “Bootmode” switch to avoid unintentional
reprogramming of Bootblock. Bootmode (Boot access mode) may be used for
application download as well, but its highly recommended to proceed the
application upload to CM0711 via CAN - bus by using DLA & Flash Loader as
assumed and guided in this manual.

f\y NOTICE

Should there be need for using Boot access -mode for application download, consult
your Parker representative for guidance.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 14 of 112

http://www.parker.com/

Header Link to TOC

4. Wire Harnesses

CMO0711 Software Development Kit includes following wire harnesses and
interfacing accessories:

e CMO711 power and control wire harness (can be found inside Controller
I/0 board package)

e CMO711 I/O board connection wire harness
e J1939 “Y” splice connector (ITT Cannon 130446-0000)
e J1939 terminator plug (ITT Cannon 086-0068-002)

Figure 3: CAN & Power supply connections principle to Controller /0O board (CIOB)

Included in USB- DLA kit Included in CIOB -delivery content

j’ﬂ s ‘ > cloB/

PC EE‘Z':!:{.@_J@ can ”’im] Conn. JP3
by

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 15 of 112

http://www.parker.com/

Header Link to TOC

5. Development Environment Setup
Procedure

This chapter presents general procedure for setting the development
environment for CM0711. Refer to CM0711 Instruction Book (HW User manual)
HY33-4201-1B/UK to found out the Controller I/O board settings for the CM0711

module.

1. Ensure, that you have all the needed equipment and software for CM0711
Software development environment

a.

b.
c.
d

I\Er) NOTICE

PC

CMO0711 Software development kit

Data Link Adapter

Integrated Development Environment (third party tools)
i. Freescale CodeWarrior® - compiler

ii. Debugger tool for fault finding in development (if
necessary)

Consult your local Parker sales contact to found out possibilities to get modules with
debugger interface. Normal serial production units do not have this possibility!

e.

f.

Power supply +12V/5A
CMO0711- module

2. Install DLA drivers to PC and connect DLA into PC’s USB port
3. Install IDE.

4. Extract SDK Software file content into PC to suitable location, where it can
be accessed by IDE

5. Setup Debugger (development unit only)
6. Setup SDK HW content and external devices (DLA & Power supply)

a.
b.
c.

g.

Take the Controller 1/0 board (CIOB)
Connect the cabling between CIOB and DLA

If you have adjustable power supply, set the voltage to 12V and
turn the power supply off in this point

Connect the cabling between CIOB and external power supply
Connect the cabling between CIOB and CM0711

Turn the power supply on and check that LED in CM0711 start to
lit and you see some signs of life in CIOB also

You can now turn the power off until you are ready to download
your first application into CM0711 module

7. Get familiar into reference documentation. Now you are ready to start the
application development with CM0711

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 16 of 112

http://www.parker.com/

Header Link to TOC

6. General Info for Application
Development with CM0711 SDK

6.1. Services Provided by CM0711 SDK

Called services are functions that you call (call is made from the application to the
framework).

Callback services are functions that are called automatically (call is made from
the framework to the application).

Functions that are called automatically need to be defined as part of the
application.

NOTICE

The majority of services for the SDK are called. Callback services are identified by a
note immediately before the prototype information. Refer to section 9.1.1.1 ap_init to
see an example of a callback service.

6.2. Header Files

Before you can use the services for a particular library, you must #include the
appropriate header files.

The header files that need to be included for each library section are indicated in
the introduction for each library.

All header files use “.h” as the extension. For example, the following is found in
the introduction for the System Library:

o Header files to include: system.h

6.3. Manual Conventions

6.3.1.

6.3.2.

The following conventions refer to the way things are labelled and organized
within the SDK manual.

Code references

Code references refer to code that resides either in an instruction or in regular
body text with following style: port_id

Code examples

Code examples are provided to clarify instructions. Code examples are found
directly after the instructions or prototypes they apply to. Every code example has
a title above, indicating it is an example —see below.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 17 of 112

http://www.parker.com/

Header Link to TOC

Here is an example of creating a thread:
return_value = fork_thread(my_thread, 10, TIMED, 0);

NOTICE

return_value is a variable that is used in code examples that require the storage of
values returned by functions. Please note that return_value is not declared by the
example as it is detracts from the focus of the example.

Following example presents the thread for blinking LED:

void LED_thread(uint32 param)
{

output_channel_t channel = (output_channel_t) param;
// toggle LED

if (get_output_state(channel) !'= OKAY_ON)

{

turn_output_on(channel);

}

else

{
turn_output_off(channel);

}
void ap_init(uint32 hardware_id)

{

// Some code ...
fork_thread(LED_thread, 1000, TIMED, LED 2);

// More code ...

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 18 of 112

http://www.parker.com/

Header Link to TOC

/7. Mandatory Steps to Create an

Application

This section provides a list of mandatory steps for all products that require the
SDK for developing a custom application.

NOTICE

CMO0711 SDK manual cannot be used on its own; it must be accompanied by the
CMO0711 Instruction Book.

7.1. Procedure

The mandatory instructions assume the following is true:

» The product is already hooked up to the development system (refer to the
Quick Start section of the hardware manual for instructions).

» The appropriate IDE is installed on the PC (refer to section 3.5 Integrated
Development Environment (IDE) Requirements for details).

To create a custom application, you must do the following:

1. Create a copy of the application template that was provided by Parker, and
then open a copy in the IDE.

2. Include the header files for the libraries you plan on using (header files are
found in the introduction of each library section).

3. Create your application using the SDK libraries and services in this manual.

Once you've created a custom application you need to transfer it from the PC to
the product (refer to section 8.4 Building and Compiling your Project for details).

NOTICE

There are product-specific parameters that you must be aware of when using the
services and functions described in this manual. Refer to section 8.3 CM0711
Software Parameters for a list of these parameters.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 19 of 112

http://www.parker.com/

Header Link to TOC

8. Product-Specific Information

v

This section provides software information specific to the CM0711 and cannot be

used with any other product.

NOTICE

CMO0711 SDK manual cannot be used on its own; it must be accompanied by the

CMO0711 Instruction Book.

8.1. CMO0/711 Memory Map

Table 1 outlines the memory regions used by the CM0711.

®

NOTICE

If a memory region is used by the CM0711, it is noted in the column “Used for” (the

table below) as “Reserved”. You can use the Flash sector if there is indicated the text

“Available”.

CMO0711 has total 576 KB of flash memory and 40kB of RAM memory.
Flash memory is divided into code and data flash memory areas following way:

o Eight blocks (32 KB + 2x16 KB + 32 KB + 32 KB + 3x128 KB) code flash

e Four blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash

Table 2: CM0711 Memory Map

Memory Range Device Selected Used for
0x00000000 — Flash sector 0 (32kB) Code Flash
0x00007FFF Reserved for Bootblock
0x00008000 — Flash sector 1 (16kB) Code Flash
0xO000BFFF Reserved for Bootblock
0x0000C000 — Flash sector 2 (16kB) Code Flash
0xO000FFFF Reserved for Bootblock
0x00010000 — Flash sector 3 (32kB) Code Flash
0x00017FFF Parameter Table*)
0x00018000 — Flash sector 4 (32kB) Code Flash
O0x0001FFFF Reserved for Bootblock
0x00020000 — Flash sector 5 (128kB) Code Flash
0x0003FFFF Unused code sector
0x00040000 — Flash sector 6 (128kB) Code Flash
0x0005FFFF Available for application
0x00060000 — Flash sector 7 (128kB) Code Flash
0x0007FFFF Available for application

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 20 of 112

http://www.parker.com/

Header Link to TOC

B

Memory Range

Device Selected

Used for

0x00800000 — Data Flash sector 1 EEPROM Emulation
0X00803FFF (16kB)
0x00804000 — Data Flash sector 2 EEPROM Emulation
0X00807FFF (16kB)
0x00808000 — Data Flash sector 3 EEPROM Emulation
0x0080BFFF (16kB)
0x0080C000 — Data Flash sector 4 EEPROM Emulation
Ox0080FFFF (16kB)
0x00C00000 — Data Flash sector 5 (8kB) | Reserved for production
0x00CO1FEF information of CM0711
0x20000000- External flash sectors 8 — | Available for application
0Xx207FFFFF 135 (64 kB each) *¥)
0x40000000 — RAM (4kB) Used as stack
0x40000FFF
0x40001000 — RAM (36kB) Used as RAM for your
0x40009FFF project.

NOTICE

*) Note: Available for application if parameter table is not used.

**) Note: 8 MB external spi flash. Cannot be read directly. Must use flash_read

function.

8.2. Fixed Addresses

There are several fixed addresses in FLASH memory that are used for CM0711
product wise information and can be utilized by the application as needed.

Table 3: CM0711 Fixed FLASH- addresses

Memory Address Size Device Used for
selected

0x00041020 4 Bytes Flash APPLICATION_PLATFORM
sector 6 _FRAMEWORK_PART_
(128kB) NUMBER_ADDRESS

0x00041024 2 Bytes Flash APPLICATION_PLATFORM
sector 6 _FRAMEWORK_VERSI
(128kB) ON_ADDRESS

0x00041026 1 Byte Flash APPLICATION_PLATFORM
sector 6 _FRAMEWORK_BUILD_
(128kB) NUMBER_ADDRESS

0x00041010 4 Bytes Flash APPLICATION_PART_NUM
sector 6 BER_ADDRESS
(128kB)

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 21 of 112

http://www.parker.com/

Header Link to TOC

Memory Address Size Device Used for
selected

0x00041014 2 Bytes Flash APPLICATION_VERSION_A
sector 6 DDRESS
(128kB)

0x00041016 1 Byte Flash APPLICATION_BUILD_NUM
sector 6 BER_ADDRESS
(128kB)

0x00000010 4 Bytes Flash BOOTBLOCK_PART_NUMB
sector O ER_ADDRESS
(32kB)

0x00000014 2 Bytes Flash BOOTBLOCK_VERSION_A
sector 0 DDRESS
(32kB)

0x00000016 1 Byte Flash BOOTBLOCK_BUILD_NUM
sector O BER_ADDRESS
(32kB)

0x00017FF8 4 Bytes Flash APPLICATION_PARAMETE
sector 3 R_TABLE_PART_NUMB
(32kB) ER_ADDRESS

0x00017FFC 2 Bytes Flash APPLICATION_PARAMETE
sector 3 R_VERSION_ADDRESS
(32kB)

0x00017FFE 1 Byte Flash APPLICATION_PARAMETE
sector 3 R_BUILD_NUMBER_AD
(32kB) DRESS

0x00017FFF 1 Byte Flash APPLICATION_PARAMETE
sector 3 R_CHECKSUM_ADDRE
(32kB) SS

8.3. CMO0711 Software Parameters

Table 4 describes the software parameters that are specific to the CM0711.

r\-il-') NOTICE

This section must be used in conjunction with the related library section indicated in

the first column.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 22 of 112

http://www.parker.com/

Header Link to TOC

Table 4: Parameters by Library

Library Parameter(s)
System Ticks Count: 1 ms.
Threads Max Threads: 24.
Outputs e output_channel_t - an enumerated type defining

the available output channels.

output_state_t - an enumerated type defining the
available output states.

Digital

Hardware Inputs /

hw_din_channel_t - an enumerated type defining
the available digital input channels.

hw_din_value_t - the data type used to return a
digital input value.

sample rate - if digital inputs are multiplexed, this
will be the rate at which new input samples are
read from the multiplexer(s).

Hardware Inputs /
Frequency

hw_fin_channel_t - an enumerated type defining
the available frequency input channels.

hw_fin_value_t - the data type used to return a
frequency input value.

hw_fin_res_factor - the resolution factor for all
returned frequency values (resolution =
1/res_factor).

Analog

Hardware Inputs /

hw_ain_channel_t - an enumerated type defining
the available analog input channels.

hw_ain_value_t - the data type used to return an
analog input value.

hw_ain_res_factor - the resolution factor for all
returned analog values (resolution =
1/res_factor).

A2D resolution - typically 10-bit (0 to 1023).

sample period - the rate at which buffered
samples are taken; note that if an A2D
multiplexer(s) is present only one set of
multiplexed inputs are sampled each period.

J1939

Number of CAN buses (1 or 2) defined as

NUMBER_OF_CAN_BUSES in hw_dictionary.h.

FLASH

(Additional Flash
memaory)

Data Width (bits)

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 23 of 112

http://www.parker.com/

Header Link to TOC

Library Parameter(s)
FLASH Queue Size (if available)
(Additional Flash
memory)

8.4. Building and Compiling your Project

A

8.4.1.

CAUTION

The functions and procedures in this section are included in the application that was
provided by Parker; therefore, you do not need to address them. However, if you
happen to delete these functions from the provided application, you must ensure
your application addresses them; otherwise, you will not be able to re-program the
product in the future.

Once you've created your application, transfer it from your PC to the CM0711
over J1939 by using the Parker’s “Parker Flash Loader tool.”

Before transferring your project, you must ensure your application is programmed
so that the product can be re-programmed in the future.

The following steps are required for building and compiling a project for the
CMO711 (refer to the sections below for detailed instructions):

1. Make your application compatible with the Parker Flash Loader tool.

2. Build an object file (VSF) that is compatible with the Parker Flash Loader
tool.

3. Transfer the object file (VSF) from the PC to the CM0711 using the Parker
Flash Loader tool.

Making your application compatible with the Parker Flash
Loader Tool

You need to make your application compatible with the Parker Flash Loader tool
so that it can be re-programmed in the future.

To make your application compatible with the flash loader, do the following:
1. Include reprogram_object in your receive table.

2. Define the following application callback functions:
O change_operating_mode_requested

O version_numbers_requested

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 24 of 112

http://www.parker.com/

Header Link to TOC

8.4.1.1.

O send_bootblock_reset_info
0 custom_J1939 EFO0_handler
0 reset _device

3. Include version_numbers in your transmit table.

Including reprogram_object in your receive table

To make your application compatible with the Parker Flash Loader tool you need
to include reprogram_object in your receive table so that it receives all OXEFQ0O
messages. Refer to section 14.3.2 Creating a Receive Table -for details on the
receive table for J1939 or section 15.3.215.3.1 for detail on the receive table for
generic CAN.

NOTICE

0xEF00 messages received by reprogram_object are used by the Parker Flash Loader
tool to communicate with the CM0711.

To make your application compatible with the Parker Flash Loader tool, do the
following:

1. Include “reprogram_object.h” in your application.

2. Include {REPROGRAM_OBJECT_PGN, & reprogram_object} in your J1939 receive
table.

NOTICE

Once you've included {REPROGRAM_OBJECT_PGN, & reprogram_object} in your
receive table, you will no longer be able to receive 0XEF00 messages (refer to section
8.4.1.2 Defining application callback functions for details on how to receive 0XEF00
messages).

Example Call:

/* NOTE: this table MUST be ordered from smallest pgn to largest pgn to
allow the binary search to work correctly */

ProtocolRXTable J1939_Filters[] =

{

{ REPROGRAM_OBJECT_PGN, &reprogram_object }, /* OxEFO0 */

{ EXAMPLE_RX_PGN, &example_receive_msg_object }, /* OxFFO0 */
{ NULL, NULL } /* must terminate with a NULL */

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 25 of 112

http://www.parker.com/

8.4.1.2.

8.4.1.2.1.

Header Link to TOC

Defining application callback functions

The callback functions found below are called automatically by reprogram_object
when OXEF00 messages are received. These callback functions give the
application control by providing the following:

e An opportunity to override a flash loader request
e change_operating_mode_requested
e version_numbers_requested
e send_bootblock_reset_info

e The ability to receive all OXEFOO messages not handled by
reprogram_object

e custom_J1939 EFOO0_handler

change_operating_mode_requested

This function automatically informs the application that reprogram_object has
received a request from the Parker Flash Loader tool to change operating modes
and gives the application an opportunity to either block the request, or allow the
request to proceed.

NOTICE

The CM0711 has three operating modes: run, reprogram, and test. The Parker Flash
Loader tool will request the CM0711 to switch to reprogram mode.

The following is called when reprogram_object has received a request to change
operating modes:

e boolean change_operating mode requested(void * data); where

e data is a pointer to message data - refer to Table 8: Message Data
Parameters

Return Value:

» TRUE instructs the reprogram_object to change operating modes.

* FALSE indicates the reprogram_object should not change operating
modes.

NOTICE

If the request is blocked, the message will not be handled by the reprogram_object,
and instead will be handled by custom_J1939_EF00_handler.

Example Call:
boolean change_operating_mode_requested(void * data)

{
return TRUE;

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 26 of 112

http://www.parker.com/

Header Link to TOC

8.4.1.2.2.

8.4.1.2.3.

version_numbers_requested

This function informs the application that reprogram_object has received a
request from the Parker Flash Loader tool for software version numbers, and
gives the application the opportunity to either block the request or allow the
request to proceed.

The following is called to inform the application that reprogram_object has
received a request for software version numbers:

e boolean version_numbers_requested(void * data); where

e data is a pointer to message data - refer to Table 8: Message Data
Parameters

Return Value:
* TRUE instructs the reprogram_object to provide software version
numbers.
* FALSE indicates the reprogram_object should not provide software
version numbers.

NOTICE

If arequest is blocked, the message will not be handled by the reprogram_object.
Instead, it will be handled by custom_J1939_EF00_handler.

Example Call:

boolean version_numbers_requested(void * data)
{

return TRUE;

}

send_bootblock_reset_info

This function informs the application that reprogram_object is about to send
J1939 name and address information to the bootblock, which is required for the
bootblock to be able to communicate with the Parker Flash Loader tool.

The following is called to inform the application that reprogram_obiject is about to
send J1939 name and address information to the bootblock:

* boolean send_bootblock reset_info(uchar8 * data); where

e data is a pointer to a 12-character buffer. If the buffer is J1939
information, data[0] is the J1939 address, data[1] to data[8] is the
J1939 name, and data[9] to data[11] is reserved.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 27 of 112

http://www.parker.com/

8.4.1.2.4.

8.4.1.3.

Header Link to TOC

Return Value:
» TRUE indicates the reprogram object is allowed to proceed.
* FALSE indicates the request should be blocked.

NOTICE

If the request is blocked, the bootblock will use a default J1939 name and address.

Example Call:

boolean send_bootblock _reset_info(uchar8 * data)
{

return TRUE;

}

custom_J1939 EFO00_handler

This function is automatically called for all OXEFOO messages that are not handled
by the reprogram_object.

The following is called when a OXEFO0 message is received, but not handled by
the reprogram_object:

e void custom_J1939 EF00_handler(void * data); where

e data is a pointer to message data - refer to Table 8: Message Data
Parameters

Return Value: Nothing.

Example Call:
void custom_J1939 EF00_handler(void * data)

{
}

Including version_numbers in your transmit table

To make your application compatible with the Parker Flash Loader tool you need
to include version_numbers in your transmit table so that it can send software
version numbers to the Parker Flash Loader tool. Refer to section 14.3.1 Creating
a Transmit Table -for details on the transmit table for J1939 or section 15.3.1 for
detail on the transmit table for generic CAN.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 28 of 112

http://www.parker.com/

Header Link to TOC

Ki) NOTICE

Flash Loader requests software version numbers and displays them so you can
quickly determine the software that is currently in the hardware before re-
programming.

To make your application compatible, do the following:
1. Include the following in your transmit table:

e { {(uchar8 *)&version_numbers, VERSION_NUMBERS_ SIZE, 0, TRUE,
FALSE }, VERSION_NUMBERS PGN, 0, 0, 6, 0, O }.

2. Define const uintl6 version_response_J1939 index = <index>; where
e index is the version number index in your transmit table.

Example Call:

Note: <index> = 0 for the following example.

J1939TransmitMessage J1939 app_messages[J1939 APP_MESSAGE_COUNT] =

{

// DataPtr Size ID xtnd dirty PGN

Rate DP P Flag Ticks, DA

{ {(uchar8 *)&version_numbers, VERSION_NUMBERS SI1ZE, O, TRUE, FALSE },
VERSION_NUMBERS_PGN, 0, 0, 6, 0, 0, J1939 BROADCAST ADDRESS },

{ {(uchar8 *)&example_pgn_data, EXAMPLE_PGN_MAX_SIZE, 0, TRUE, FALSE },
EXAMPLE_TX_PGN, 0, 0, 6, 0, 0, J1939 BROADCAST ADDRESS 1},

}:

const uintl6é version_response_J1939 index = 0;

8.4.2. Building an object file (Parker Software File)

Once you've made your application compatible with the Parker Flash Loader
Tool, you must compile your project into a Parker Software File (VSF).

To compile your project into a VSF, do the following:

1. Compile your project using Freescale CodeWarrior

¢ Refer to the Freescale CodeWarrior user manual for details on how to
compile projects.

2. Execute the following batch file: cm0711_application_template.bat

e The batch file converts the output of your compiled project from
Freescale CodeWarrior into Parker Software File (VSF) format, which
is required for downloading your project to the CM0711 using the
Parker Flash Loader tool.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 29 of 112

http://www.parker.com/

8.4.3.

Header Link to TOC

NOTICE

As your application increases in size, you may need to allocate more sectors in flash
for your application. The batch file specifies which flash sectors will get erased by the
Parker Flash Loader tool. Refer to section 8.1 “CM0711 Memory Map” for flash sector
allocation information.

These settings correlate to cm0711_application_template.bat postbuild process.
If any of the default settings are changed, they will need to be changed in both
hw_user.h and cm0711_application_template.bat.

Transferring a VSF to the CM0711 with the Parker Flash
Loader Tool

The last step in programming the CM0711 is to transfer the VSF file to the
CMO0711 using the Parker Flash Loader tool.

To transfer the VSF file to the CM0711
1. Set the power supply’s -power switch to the “on” position

e In case you have just simple downloading harness, then set
correspond it's power -switch to the “on” position

2. Set the Controller I/O- board ignition —switch to Vbatt- position

¢ In case you have just simple downloading harness, then set
correspond it’s inginition -switch to the “on” position

3. Run FlashLoader.exe.
The Flash Loader screen opens.

Figure 4: Parker Flash Loader - screen

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 30 of 112

http://www.parker.com/

Header Link to TOC

% Flash Loader

Filz Wiew Help

Module Details

Drezcription
CO711 Hw rewl

Source Address
0=FD

Function
=42

Idettity
07111

ersion
Boot Code 2.00

Enotblock ID

Software File Details

253

(1]

28945

Application (D

|C:\Documents and SettingshjpribDesktophCMO7F11_monta_mod

Stark

| Releazed 7/27/2012 12:00:09 Pt

The box on the left lists every module on the J1939 network that supports J1939.

i\:'ii') NOTICE

Additional modules may appear in the modules list, as they also support J1939.
Although these “extra” modules support J1939, they won’t always support

downloading over J1939 with the flash loader.

4. From the modules list, select the module labeled CM0711.
5. From the Software File Details list, select your VSF file.

6. Click Start.

e Your VSF file downloads to the CM0711.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 31 of 112

http://www.parker.com/

Header Link to TOC

9. System Library

The System provides core system functionality, which is provided in the form of a
time base called ticks, which is the time base that is used to base tasks on.

Header file(s) to include: System.h

NOTICE

Refer to section 8.3 “CMO0711 Software Parameters” before using the services in this
section.

9.1. Services

9.1.1.

9.1.1.1.

9.1.2.

9.1.2.1.

The sections that follow provide information for
¢ Initializing the application
e Determining time

Initializing the application
There is only one service available for initializing the application, called ap _init.
ap_init

The following is automatically called when the product is powered on, to allow the
application to initialize.

NOTICE

ap_init isa callback service.

e void ap_init(product_specific); where
e product_specific is the product-specific hardware revision number.

Return Value: Nothing.

Determining time
There are two services available for determining time, called ticks and ticks_us.

ticks

The purpose of the ticks counter is to return the number of milliseconds (ms) that
have gone by since the framework was started.

To return the number of ticks

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 32 of 112

http://www.parker.com/

Header Link to TOC

9.1.2.2.

e Call uint32 ticks(void);

Return Value: Ticks Count where
e Range = (0to (232 - 1) ms)

Example of using ticks:

If you wanted to find out if more than 500 ms have passed since the framework
started, you would write the following:

if (ticks() > 500)
{

// More than 500 ms have passed since the framework was started.

}

ticks_us

The purpose of the ticks_us counter is to return the number of microseconds (us)
that have gone by since the framework was started.

To return the number of ticks_us
e Call uint32 ticks_us(void);

Return Value: Ticks Count in microseconds where
e Range =(0to (232 —-1) us)

Example of using ticks_us:

If you wanted to find out if more than 500 us have passed since the
previous_ticks_us started, you would write the following:

uint32 previous_ticks_us = ticks_us();

if ((ticks_us() - previous_ticks_us) > 500UL)
{

// More than 500 ps have passed since the previous_ticks us was started.

}
Note that this counter will rollover every 71.6 minutes.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 33 of 112

http://www.parker.com/

Header Link to TOC

10. Threads Library

Threads represent the tasks of your project, and are used when your tasks do not
require exact timing in order to work. Tasks that require exact timing should use
timers rather than threads.

The maximum number of threads (Max Threads) allowed in the system depends
on the product you are using. You can only have Max Threads running in the
system at one time. When using the services in this section, be sure to note the
number of threads used, as this counts toward the Max Threads used for the
entire system.

Header file(s) to include: threads.h

r\i-l') NOTICE

Refer to 8.3 “CMO0711 Software Parameters” before using the services in this section.

10.1. Types of Threads

There are three kinds of threads: timed, standard & true timed

Table 5: Thread types

Thread type Description Usage / Notes

STANDARD Run when possible (idle Typically used in polling routines
time), but run at least once
every period

TIMED Scheduled to run at the Generally used method for
specified period different types of tasks

TRUE_TIMED Actively manages thread This type is used when task is
scheduling to try to maintain | needed to be proceed in certain
the desired period timeframe/ interval.

regardless of thread
execution time

10.2. How to Write Threads

Write threads so they execute quickly. Threads that take too long to execute
affect the scheduling of other threads. Since the system does not have a
preemptive scheduler, threads execute to completion. Therefore, once a thread is
finished executing, it is rescheduled automatically to run again at its scheduled
period.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 34 of 112

http://www.parker.com/

Header Link to TOC

10.2.1.

10.2.2.

10.2.2.1.

The actual period of a thread is equal to the thread run time plus the period in
which the thread is scheduled. For example, a timed thread that is scheduled for
a period of 100 ms, and takes 10 ms to execute, will have an actual period of 110
ms.

NOTICE

If the threads take a long time to run, it is possible that multiple threads will miss
their deadlines. Because of this, you should keep the thread period much larger than
the thread run time.

Multiple threads can have the same start time; however, the scheduler can only
execute one thread at a time (thread #1 executes; when it is finished, thread #2
executes, etc.).

NOTICE

If you require precise timing, use a timer rather than a thread.

Services
The sections that follow provide information for
e Creating a thread
e Terminating a thread
e Changing the period for a thread
¢ Changing a thread parameter

Creating a thread
There is only one service available for creating threads, called fork_thread.

fork_thread
This service is used to create threads.

NOTICE

Threads should not be forked from within an interrupt.

To create a thread

e Calluinti6 fork_thread(thread, uintl6 period, type, uint32
parameter); where

e thread is the pointer to the function that will be called.

e period is the thread period measured in system ticks resolution
(typically ms).

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 35 of 112

http://www.parker.com/

10.2.3.

10.2.3.1.

Header Link to TOC

e type is either TIMED, STANDARD or TRUE TIMED - refer to Table 5:
Thread types for more information and usage of different thread types.

e parameter is the thread parameter.

Return Value: Thread ID where

¢ Non 0 indicates the thread was successfully created (between 1 and Max
Threads).

e 0O indicates no more threads are available.

Example of creating a thread:
return_value = fork_thread(my_thread, 10, TIMED, O);

Terminating a thread
There are two ways to terminate a thread
e Terminate a thread while it is running (exit_thread)
¢ Terminate a thread while it is not running (ki Il1_thread)

exit_thread

This service terminates a thread while it is running by telling the scheduler that
the current thread does not have to be re-scheduled.

NOTICE

Calling exit_thread prevents the thread from being rescheduled; however, the
thread will continue to run until the function is complete. Because of this,
exit_thread doesn’t need to be placed at the end of the function.

To terminate a thread while it is running
e Call void exit_thread(void);

Return Value: Nothing

Example of using exit_thread:
void my_thread(uint32 parameter)

{

if (terminate_thread /* where terminate_thread has been defined somewhere
else */)

{

exit_thread();

}

}

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 36 of 112

http://www.parker.com/

Header Link to TOC

10.2.3.2.

10.2.4.

10.2.4.1.

kill_thread

This service terminates a thread while it is not running by verifying that the given
thread exists in the queue of available threads, and deleting it so that it will no
longer run.

NOTICE

You cannot kill a thread that is running by using kill_thread.

To terminate a thread while it is not running
e Call uinti6é kill_thread(uintl6 thread_id); where
e thread_id is the thread you wish to “kill”.

Return Value: Thread ID where

¢ Non 0 indicates the thread was successfully terminated (between 1 and
Max Threads).

e O indicates the thread was not terminated.

Example of using kill_thread:

if (kill_thread(l) == 1)

{

// Successfully killed thread 1.

}

Changing the period for a thread

There is only one service available for changing a thread period, called
thread_period.

thread_period

This service changes the period of the current (running) thread, which will take
effect when the thread is re-inserted into the thread queue.

NOTICE

You can only change the period of the thread while the thread is running.

To change the period of a thread
e Call uint16 thread_period(uintl6é new_period); where
e new_period is the new thread period.

Return Value: Current thread period where

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 37 of 112

http://www.parker.com/

10.2.4.2.

10.2.4.3.

Header Link to TOC

¢ Non 0 indicates the update was successful.
¢ 0 indicates the update was not successful.

Example of changing a thread period:

void my_thread(uint32 parameter)

{

/* We assume new_period and old_period are declared and set elsewhere. */
if(new_period != old_period)

{

returned_value = thread_period(new_period);

old_period = new_period;

}

}

Changing a thread parameter

There is only one service available for changing a thread parameter, called
thread_parameter.

thread_parameter

This service changes the parameter of the current (running) thread, which will
take effect when the thread is re-executed.

NOTICE

You can only change the thread parameter while the thread is running.

To change the thread parameter
e Call uint32 thread_parameter(uint32 new_parameter); where
e new_parameter is the new thread parameter.

Return Value: Current thread parameter where
e Non 0 indicates the update was successful.
¢ 0 indicates the update was not successful.

Example of changing a thread parameter:

void my_thread(uint32 number_of_thread_executions)

{

/*Lets keep track of the number of times the thread is executed. */
number_of_thread_executions++;

return_value = thread_parameter(number_of_thread_executions);

}

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 38 of 112

http://www.parker.com/

Header Link to TOC

11. Outputs Library

This section provides services that are used for control, and determine the state
of the outputs.

Header file(s) to include: hw_outputs.h

f\i) NOTICE

Refer to section 8.3 “CMO0711 Software parameters” - before using the services in this
section.

11.1. Services
The sections that follow provide information for
e Controlling the pulse width modulation (PWM) of outputs
e Controlling an output digitally
¢ Determining the output state

11.1.1. Controlling the Pulse Width Modulation (PWM) of Outputs
There are two ways to control the PWM of outputs:
e Setting PWM frequency (set_output_PWM_frequency)
e Setting PWM duty cycle (set_output_PWM_duty_cycle)

Frequency represents the period of the output (square wave), and duty cycle
represents the percentage of the square wave, as illustrated in the following

Figure 5: Frequency to duty cycle relationship

[to—Ple—tor—>
ON
OFF L
HiPeriod—b*
Time————————p

Frequency = 1/ Period x 100

Duty = (ton/ Period) x 100

11.1.1.1. set_output PWM_frequency
This service changes the PWM frequency for an output.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 39 of 112

http://www.parker.com/

11.1.1.2.

11.1.2.

Header Link to TOC

To change the PWM frequency of an output

e Call boolean set_output_pwm_frequency(output_channel t channel,
uint32 frequency, uintlé res_factor); where

e channel is the output channel.
e frequency is the new frequency for the channel.

e res_factor is the multiplier used to determine accuracy of the
frequency (1 =1, 10 =0.1, 100 = 0.01, etc.).

Return Value:
¢ TRUE indicates success.
e FALSE indicates failure.

Example of changing PWM frequency:

return_value = set_output_pwm_Ffrequency(OUTPUT1, 501, 10); // set OUTPUT1
frequency 50.1 Hz, Res factor 0.1

NOTICE

PWM frequency setting is common for all outputs.

set_output_PWM_duty_cycle
This service changes the PWM duty cycle (percentage of on vs. off) for an output.

To change the PWM duty cycle of an output

e Call boolean set_output_pwm_duty(output_channel_t channel, uint16
duty cycle, uintl6 res_factor); where

e channel is the output channel.
e duty cycle specifies the new % duty cycle for the channel.

e res_factor is the multiplier used to determine accuracy of the
frequency (1 =1, 10 =0.1, 100 = 0.01, etc.).

Return Value:
¢ TRUE indicates success.
e FALSE indicates failure.

Example of changing PWM duty cycle:

return_value = set_output_pwm_ duty(OUTPUT1, 501, 10); // set OUTPUT1 duty
cycle 50.1 %, Res factor 0.1

Controlling an Output Digitally
There are two ways to control an output digitally:

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 40 of 112

http://www.parker.com/

Header Link to TOC

11.1.2.1.

11.1.2.2.

11.1.3.

11.1.3.1.

e Turning on an output (turn_output_on)
e Turning off an output (turn_output_off)

turn_output_on
This service turns on a specific output channel.

To turn on a specific output channel
e Call boolean turn_output_on(output_channel_t channel); where
e channel is the output channel.

Return Value:
* TRUE indicates success.
* FALSE indicates failure.

Example of turning on an output:

return_value = turn_output_on(OUTPUT1); // turn on OUTPUT1 (if it is PWM,
set PWM to 100%)

turn_output_off
This service turns off a specific output channel.

To turn off a specific output channel
e Call boolean turn_output_off(output_channel_t channel); where
e channel is the output channel.

Return Value:
 TRUE indicates success.
* FALSE indicates failure.

Example of turning off an output:

return_value = turn_output_off(OUTPUT1); // turn off OUTPUT1 (if it is
PWM, set PWM to 0%)

Determining the State of an Output Channel

There is only one service available for telling the state of an output channel,
called get_output_state.

get_output_state
This service determines the state of the specified output channel.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 41 of 112

http://www.parker.com/

NOTICE

Header Link to TOC

When the state of an output is returned, you will receive error information.

To determine the state of an output

e Call output_state_t get_output_state(output_channel_t channel);

where
e channel is the output channel.

Return Value:
Refer to section 8.3 “CM0711 Software Parameters”.

Example of determining the state of an output channel:
return_value = get_output_state(OUTPUT1);

Possible states for CM0711 are following:

Table 6: Output states

detected, for example on
a high side output, back
driven is short to battery

Enumerator Return Meaning Note
value
NO_FAULT 0 Output is off and not
faulted
OKAY_OFF 0 Output is off and not =NO_FAULT
faulted
OKAY_ON 1 Output is on and not
faulted
SHORT_CCT 2 Output is shorted
OVER_CURREN 3 Output over current Only for LS-
T detected Outputs
OPEN_LOAD 4 Output open load
detected
BACK_DRIVEN 5 Output back drive

NO_VOLTAGE 6 No output supply voltage

MAYBE_SHORT 7 Output may be shorted -This state

is intended to indicate that an
output short condition has been
detected, but the output on time is
too short to tell for sure

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 42 of 112

http://www.parker.com/

Header Link to TOC

11.2. Output Options

11.2.1.

There is possibility to select several options for used output types. These are also
services like traditional output services described in previous section.

This section introduces the options for outputs.

NOTICE

For more detailed description of the option - refer to CM0711 Software reference
manual “document.chm” in CM0711 SDK software package and CM0711 Instruction
Book: HY33-4201-IB/UK for details of hardware implementation.

Output_options_t
This service provides a generic mechanism for adjusting output option.
File reference: hw_config.h.

There is following setting for output option
0 OUTPUT_OVER_CURRENT_THRESHOLD

To set output options

o Call boolean set_output_option (output_channel t channel, uchar8
option, uintlé value); where

e channel is the output channel
e option Specifies the option.
e value Specifies the option value.

Return Values:
. TRUE (= success)
. FALSE (= failure)

Example of setting options
#define OPTION_1 (1)
#define VALUE_1 (1)
if (TRUE == set_output_option(OUTPUT1, OPTION_1, VALUE_1))
{
// The OPTION_1 of OUTPUT1 is now VALUE_1.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 43 of 112

http://www.parker.com/

Header Link to TOC

11.3. Output Critical Fault Inhibit Disable

When diagnostics detects short circuit fault (Table 6) the output is disabled i.e.
turned off. In some cases there is reason to prevent this kind of output behavior.
Diagnostics just detects output’s critical fault but not turn off the output.

Use this service only when need
Controlling the pulse width modulation (PWM) of high side outputs
AND
Used PWM duty cycle values are low (0-30%)
AND
High side output short to ground intermittent faults occurs.

11.3.1. output_critical_fault_inhibit_disabled
This service makes possible to disable/enable critical fault inhibit.

To adjust output’s critical fault inhibit state

e Call void set_output_critical_fault_inhibit _disabled_state(
output_channel_t output, Boolean new_state); where

e output is the output channel

® new_state is Boolean variable, FALSE - critical fault inhibit
enabled (default), TRUE - critical fault inhibit disabled

Return Value: Nothing

f\y NOTICE

It’s possible to use this service just for high side outputs. Possible values for output
channel are OUT5_2A_HS, OUT6_2A_HS... OUT11_5A_HS. File reference:
hw_dictionary.h.

Example of output critical fault inhibit disable
// add prototype

extern void set_output_critical_fault_inhibit_disabled_state(
output_channel_t output, boolean new_state);

// call function
set_output_critical_fault_inhibit_disabled_state(OUT5_2A HS, TRUE);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 44 of 112

http://www.parker.com/

Header Link to TOC

«"ﬁ CAUTION

This service should be used only when its absolutely needed by the application. Such
cases may be for example half bridge configuration of HS & LS outputs with PWM
control or other cases where it is challenging to get inclusive feedback information of
the HS outputs. Application developer shall consider HS short circuit protection
implementation and protection level case by case when using this service!

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 45 of 112

http://www.parker.com/

Header Link to TOC

12. Inputs Library

This section provides services that are used to determine the state of an input.
The data that is generated from these services is in the form of raw input data
that hasn't been filtered or converted.

Refer to section 16 Input Manager - for details on how to filter and convert raw
input data.

Header file(s) to include: hw_inputs.h

NOTICE

Refer to 8.3 CMO0711 Software Parameters, before using the services in this section.

12.1. Services

12.1.1.

12.1.1.1.

The "read_" services in this section (read_din_value, read_fin_value, etc.) are
optimized to be called by the Input Manager (if needed, refer to section 16 Input
Manager), but can be called directly if the Input Manager is not used.

The "get_" services in this section (get_din_value, get_fin_value, etc.) provide
an optional sample timestamp, but are not optimized for interfacing with the Input
Manager.

The sections that follow provide information for
o Determining the value of digital inputs
e Determining the value of frequency inputs
o Determining the value of frequency inputs period
e Determining the pulse count- value in frequency inputs
o Determining the duty cycle- value in frequency inputs
e Determining the value of analog inputs

Determining the value of digital inputs

There are two ways to determine the value of a digital input:
e Get adigital input value (get_din_value)
e Read a digital input value (read_din_value)

get_din_value
This service returns the current value of the selected digital input.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 46 of 112

http://www.parker.com/

Header Link to TOC

To get the value of a digital input

e Call hw_din_value_t get_din_value(hw_din_channel_t channel, uint32 *
timestamp); where

e channel is the selected input.

o timestamp (if not NULL) is a pointer to the Ticks Count for when the
sample was taken, as long as timestamp is a valid pointer.

Return Value: Current value of selected input (connector pin state) where
e 0O indicates ground.
e 1lindicates battery.

Example of returning the value of a digital input:

return_value = get_din_value(INPUT1 /* selected hw_din_channel_t */,
NULL);

12.1.1.2. read_din_value
This service returns the current value of the selected digital input.

To read a digital input value

e Call void read din_value(const idata_ptr_t data ptr, const
input_read_params_ptr_t params); where

e data_ptr is a pointer to the location where the input value will be stored.

e params IS a pointer to the read parameters (hw_din_params_t) specifying
the selected digital input channel number.

Return Value: Nothing.

Example of returning the value of a digital input:
// read INPUT1 value
hw_din_value_t inputl_value = 0O;

hw_din_params_t inputl_parameters = {INPUT1l /* selected hw_din_channel_t
*/};

read_din_value(&inputl_value, &inputl_parameters);

// inputl_value now reflects INPUT1"s current value

12.1.2. Determining the value of frequency inputs
There are two ways to determine the value of frequency inputs:
o Get a frequency input value (get_fin_value)
¢ Read a frequency input value (read_fin_value)

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 47 of 112

http://www.parker.com/

Header Link to TOC

12.1.2.1. get_fin_value
This service returns the current value of the selected frequency input.

To get the frequency input value

e Call hw_fin_value_t get_fin_value(hw_fin_channel _t channel, uint32
* timestamp); where

e channel is the selected input.

o timestamp (if not NULL) is a pointer to the Ticks Count for when the
sample was taken, as long as timestamp is a valid pointer.

Return Value: Returns the current frequency value of the selected frequency
input where

e The units for the number are in Hz, and the resolution is defined according
to hw_fin_res_factor. Refer to chapter 8.3 “CM0711 Software
Parameters” -for more details on hw_fin_res_factor

Example of returning the value of a frequency input:

if (get_fin_value(INPUT1 /* selected hw_fin_channel_t */, NULL) > (10 *
hw_fin_res_factor))

{
// INPUT1 is greater than 10 Hz

}

else

{
// INPUT1 is less than 10 Hz

}

12.1.2.2. read_fin_value
This service returns the current value of the selected frequency input.

To read the frequency input value

e Call void read_fin_value(const idata_ptr_t data_ptr, const
input_read_params_ptr_t params); where

e data_ptr is a pointer to the location where the input value will be
stored.

e params IS a pointer to the read parameters (hw_din_params_t)
specifying the selected frequency input channel number.

Return Value: Nothing.

Example of returning the value of a frequency input:
// read FREQ1l value

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 48 of 112

http://www.parker.com/

Header Link to TOC

hw_fin_value_t fregl _value = 0;

hw_fin_params_t freql_parameters = {FREQl1 /* selected hw_fin_channel_t
*/};

read_fin_value(&freql_value, &freql_parameters);

// freql_value now reflects FREQLl"s current value

12.1.2.3. get_fin_period
This service returns the periodical value of the selected frequency input.

To get the periodical value
e Call hw_fin_period_t get_fin _period (hw_fin_channel_t channel,
uint32 * timestamp) Where

e hw_fin_channel_t channel is the selected frequency input channel
number.

o timestamp (if not NULL) is set to the ticks count when the sample
returned was taken

Return Value: Current period value of the selected input. The period will be

returned in seconds with the resolution set according to
hw_fin_period_res_factor

Example of returning the periodical value of a frequency input:
if (get_fin_period(FREQ1 , NULL) > (1 * hw_fin_period_res_factor))
{
// The period of FREQlLl is greater than 1 second.

}

else

{
// The period of FREQlLl is less than 1 second.

12.1.2.4. read_fin_period

Stores the current period value of the selected input into data_ptr. to read the
periodical value

e« Call void read_fin_period (const idata ptr_t data ptr,
const input_read_params_ptr_t params); where

e data_ptr is a pointer to the location where the period is to be stored.
The period will be stored in seconds with the resolution set according
to hw_fin_period_res_factor.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 49 of 112

http://www.parker.com/

Header Link to TOC

e params IS a pointer to the read parameters (hw_fin_params_t)
specifying the selected frequency input channel.

Return Value: Nothing.
Example of returning the periodical value of a frequency input:

// Read FREQ1l period
hw_fin_value_t freql_period = O;
hw_fin_params_t freql_parameters = {FREQ1};
// Selected hw_fin_channel_t.
read_fin_period(&freql_period, &freql_parameters);

// freql_period now reflects FREQl"s current period.

12.1.2.5. get_fin_count

This service returns the number of edges detected at the selected input
(resolution factor 1), where the edge counted is product specific and is one of the
following:

o falling (default)
0 rising
0 both

To get the pulse counts

e« Call hw_fin_count_t get_fin_count (hw_fin_channel_t channel,
uint32 * timestamp) where

e channel is the selected input

e timestamp (if not NULL) is set to the ticks count when the sample
returned was taken.

Return Value: Number of edges detected at selected input

Example of returning the pulse count value of a frequency input:
if (get_fin_count(FREQL, NULL) > (10))
{
// More than 10 edges have been detected at FREQ1.

}

else

{
// Less than 10 edges have been detected at FREQ1.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 50 of 112

http://www.parker.com/

Header Link to TOC

12.1.2.6. read fin_count

This service stores the number of edges detected at the selected input (resolution
factor 1) into data_ptr, where the edge counted is product specific and is one of
the following:

o falling (default)
0 rising
0 both

To read the pulse counts
e« Call void read fin _count (const idata ptr_t data_ptr,
const input_read_params_ptr_t params) where

e data_ptr is a pointer to the location where the number of edges is to
be stored.

e params is a pointer to the read parameters (hw_fin_params_t)
specifying the selected frequency input channel.

Return Value: Nothing.

Example of reading the pulse count value of a frequency input:
// Read FREQl count
hw_fin_count_t freql_count = 0;

hw_fin_params_t freql_parameters = {FREQ1l}; // Selected
hw_fin_channel_t.

read_fin_count(&freql_count, &freql_parameters);

// freql_count now reflects FREQLl"s current count.

12.1.2.7. get_fin_duty_cycle

This service returns the duty cycle detected at the selected input (resolution
factor 1), where the duty cycle is determined as 100*on_time/period.

To get the duty cycle
e Call hw_fin_duty cycle_t get_fin_duty cycle (hw_fin_channel_t
channel, uint32 * timestamp) Wwhere
e channel is the selected input

o timestamp (If not NULL) is set to the ticks count when the sample
returned was taken.

Return Value is the frequency's duty cycle value of the selected channel. The
duty cycle will be returned in 1%/bit resolution.

Example of returning the duty cycle of a frequency input:

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 51 of 112

http://www.parker.com/

12.1.2.8.

12.1.3.

Header Link to TOC

if (get_fin_duty cycle(FREQL, NULL) > (10))
{

// The duty cyle of FREQ1l is more than 10%.
¥
else
{

// The duty cycle of FREQL is less than 10%.

}Returns

read_fin_duty cycle

This service stores the duty cycle detected at the selected input (resolution factor
1) into data_ptr, the duty cycle is determined as 100*on_time/period.

To read the duty cycle

e Call void read fin _duty cycle (const idata_ptr_t data ptr,
const input_read_params_ptr_t params) where

e data_ptr is a pointer to the location where the duty cycle is to be
stored. The duty cycle will be returned in 1%/bit resolution.

e params is a pointer to the read parameters (hw_fin_params_t)
specifying the selected frequency input channel.

Return Value: Nothing.

Example of reading the duty cycle of a frequency input:
// Read FREQ1l duty cycle
hw_fin_duty cycle_t freql_duty cycle = 0;

hw_fin_params_t freql_parameters = {FREQ1l}; // Selected
hw_fin_channel_t.

read_fin_duty cycle(&freql_duty_cycle, &freql_parameters);
// freql_duty cycle now reflects FREQl"s current duty cycle

Determining the value of analog inputs

There are two types of services available to determine the analog to digital (A2D)
count for a selected input: buffered and real time.

o Buffered should be used when analog input values are not time critical.

o Buffered works by sampling all analog inputs per hardware
requirements at a particular sample period and provides the buffered
samples. Refer to section 8.3 “CM0711 Software parameters” -for
more details on sample period.

¢ Real-time should be used when analog input values are time critical.
Realtime works by forcing a sample to be taken immediately.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 52 of 112

http://www.parker.com/

Header Link to TOC

v

12.1.3.1.

NOTICE

The real-time service is resource intensive and therefore should be imited to
channels that are time critical. Real-time capabilities are product specific.

There are four services for determining the state of analog inputs:
¢ Get a buffered analog input value (get_buffered_ain_value)
¢ Get a real-time analog input value (get_realtime_ain_value)
¢ Read a buffered analog input value (read_buffered_ain_value)
¢ Read areal-time analog input value (read_realtime_ain_value)

NOTICE

The value returned (for buffered and real-time) does not take into account any gain
or attenuation that may be on the board.

get_buffered_ain_value

This service returns the current A2D count for the selected input based on the
most recent sampled value.

To get a buffered analog input value

e Call hw_ain_value_t get_buffered_ain_value(hw_ain_channel_t
channel, uint32 * timestamp); where

e channel is the selected channel.

e timestamp is a pointer to the Ticks Count for when the sample was
taken, as long as timestamp is a valid pointer (not NULL).

Return Value: The A2D Count where

e The resolution is set according to hw_ain_res_factor (refer to section 8.3
“CMO0711 Software Parameters” -for more details on hw_ain_res_factor).

Example of getting a buffered analog input value:

if (get_buffered_ain_value(ANALOG1l /* selected hw_ain_channel_t */, NULL)
> (500 * hw_ain_res_factor))

{

// ANALOG1 is greater than 500 A2D count
}

else

{

// ANALOG1l is less than 500 A2D count

}

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 53 of 112

http://www.parker.com/

12.1.3.2.

12.1.3.3.

Header Link to TOC

get_realtime_ain_value

This service returns the current A2D count for the selected input by forcing an
immediate sample to be taken.

NOTICE

If real time is not available, the A2D Count will be (-1).

To get a real-time analog input value
e Call hw_ain_value_t get_realtime_ain_value(hw_ain_channel_t
channel, uint32 * timestamp); where
e channel is the selected channel.

e timestamp is a pointer to the Ticks Count for when the sample was
taken, as long as timestamp is a valid pointer (not NULL).

Return Value: The A2D Count where

e The resolution is set according to hw_ain_res_factor (refer to section 8.3
“CMO0711 Software Parameters” -for more details on hw_ain_res_factor).

Example of getting a real-time analog input value:

if (get_realtime_ain_value(ANALOG1l /* selected hw_ain_channel_t */, NULL)
> (500 * hw_ain_res_factor))

{

// ANALOG1 is greater than 500 A2D count
}

else

{

// ANALOG1l is less than 500 A2D count

}

read_buffered_ain_value

This service returns the current A2D count for the selected input based on the
most recent sampled value.

To read a buffered analog input value

e Call void read buffered_ain_value(const idata_ptr_t data ptr,
const input_read_params_ptr_t params); where

e data_ptr is a pointer to the location where the input value will be
stored.

e paranms iS a pointer to the read parameters (hw_din_params_t)
specifying the selected analog input channel number.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 54 of 112

http://www.parker.com/

Header Link to TOC

12.1.3.4.

Return Value: Nothing.

Example of reading a buffered analog input value:
// read battery voltage
hw_ain_value_t vbatt value = 0;

hw_ain_params_t vbatt_parameters = {VBATT_MEASURE /* selected
hw_ain_channel_t */};

read_buffered_ain_value(&vbatt_value, &vbatt_parameters);

// vbatt_value now reflects battery voltage current value

read_realtime_ain_value

This service returns the current A2D count for the selected input by forcing an
immediate sample to be taken.

NOTICE

If real-time is not available, the A2D Count will be (-1).

To read a real-time analog input value

e Call void read realtime_ain_value(const idata ptr_t data_ptr, const
input_read_params_ptr_t params); where

e data_ptr is a pointer to the location where the input value will be
stored.

e paranms iS a pointer to the read parameters (hw_din_params_t)
specifying the selected analog input channel number.

Return Value: Nothing.

Example of reading a real-time analog input value:
// read ANALOG1 value
hw_ain_value_t analogl value = 0;

hw_ain_params_t analogl_parameters = {ANALOG1l /* selected
hw_ain_channel_t */};

read_realtime_ain_value(&analogl_value, &analogl parameters);

// analogl _value now reflects ANALOGl"s current value

12.2. Input Options

There is possibility to select several options for all input types. These are also
services like traditional input services described in previous section.

This section introduces the options for all three input types: Digital, analog &
frequency inputs.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 55 of 112

http://www.parker.com/

12.2.1.

12.2.2.

Header Link to TOC

NOTICE

For more detailed description of these options - refer to CM0711 Software reference
manual “document.chm” in CM0711 SDK software -package.

set_din_option
This service provides a generic mechanism for adjusting input option(s). Note that
all values for option and value are defined for a platform in hw_config.h.

There are following settings for digital input options:
o DIN_ACTIVE_STATE
= 0 - active low, 1 - active high
o0 DIN_LOWER_DIGITIZATION_THRESHOLD
= inmV (0 to 3000), default is 1320 (1.32V at Micro)
o DIN_UPPER_DIGITIZATION_THRESHOLD
= inmV (0 to 3000), default is 1980 (1.98V at Micro

To set digital input options
e Call boolean set_din_option (hw_din_channel_t channel,
uchar8 option, uintl6é value) where
e channel is the selected input
e option is product specific, refer to din_options_t in hw_config.h.
e value is product specific, refer to din_options_t in hw_config.h.

Return Values:
o True (= success)
o False (= failure)

Example of setting options for digital input
if (TRUE == set_din_option(INPUT1, OPTION_1, VALUE_1))

{
// Set the OPTION_1 of INPUT1 to VALUE_1.

3

set_ain_option
This service provides a generic mechanism for adjusting input option(s). Note: all
values for option and value are defined for a platform in hw_config.h.

There are following settings for analog input options:

o0 AIN_ATTENUATION

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 56 of 112

http://www.parker.com/

Header Link to TOC

= bit0=ATTNI, bit 1 = ATTN2
0 AIN_GAIN

» bit 0 = GAINL, bitl = GAIN2
o AIN_PULLUP_DOWN

= bit 0 = pullup, bit 1 = pulldown (&), bit 2 = pulldown (b)
0 AIN_CURRENT

= bit O = current mode

Ki) NOTICE

AIN_GAIN & AIN_ATTENUATION are possible for analog input 1 only.

AIN_CURRENT (Current mode) is possible for analog input 2...5

AIN_PULLUP_DOWN (pull-up and pull-down options) are possible for analog
inputs 1...5

To set analog input options
e Call boolean set_ain option (hw_ain_channel_t channel,
uchar8 option, uintlé value) Wwhere
e channel is the selected input

e option is product specific, refer to ain_options_t in hw_config.h and
“document.chm” — software reference manual. For HW configuration,
scaling etc..refer to CM0711 Instruction Book (HY33-4201-1B/UK)

e value is product specific, refer to ain_options_t in hw_config.h.

Return Values:
o True (= success)
o False (= failure)

Example of setting options for analog input
if (TRUE == set_ain_option(ANALOG1, OPTION_1, VALUE_ 1))

{
// Set the OPTION_1 of ANALOG1 to VALUE_1.

12.2.3. set_fin_option

This service provides a generic mechanism for adjusting input option(s). Note: all
values for option and value are defined for a platform in hw_config.h.

There are following 3 settings for frequency input option
o FIN_NO_OPERATION
= Channel is not used for anything.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 57 of 112

http://www.parker.com/

Header Link to TOC

o FIN_CAPTURE_ANY_EDGE (=13)
= Capture a timestamp of any edge event
= provides data through interrupt callback
= This is the default mode for both channels
= Wil disable the quadrature mode if set
= Timer overflows are tracked
o0 FIN_QUADRATURE_DECODE (=6)

= Use two sequential channels in quadrature decoding mode,
keeping track of position of an encoder wheel.

= Only the primary channel can be set to this mode!

= |nitializes the secondary channel to
FIN_MODE_NO_OPERATION explicitly.

= Counter overflows are not tracked.

To set frequency input options
e Call boolean set_fin _option (hw_fin_channel_t channel,
uchar8 option, uintlé value) Wwhere
e channel is the selected input
e option is product specific, refer to fin_options_t in hw_config.h.
e value is product specific, refer to fin_options_t in hw_config.h.

Return Values:
o True (= success)
o False (= failure)

Example of setting options for analog input
if (TRUE == set_fin_option(FREQ1, OPTION_1, VALUE_1))
{
// Set the OPTION_1 of FREQl to VALUE_1.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 58 of 112

http://www.parker.com/

Header Link to TOC

13. Communication Media

This chapter introduces the communication media related services for CAN -bus.

For more information of actual CAN messaging (Transmit & Receive) either by
standard CAN (11 bit identifiers) or extended CAN messaging according to J1939
(29 bit identifiers), refer to chapter 14: J1939 Stack library & chapter 15: Generic
CAN Stack and their subchapters.

13.1. Services

13.1.1. start CAN

Starts the CAN layer to get the CAN bus and stack operational using a default bit
rate (default is 250K bits/sec). Starting the CAN layer enables an already
initialized J1939 Stack to become operational.

To start CAN communication
e Callstart_ CAN (uintl6 rate) where

e rate Is by default 250 kbit/s rate. This is update rate in ms (time base
equal to ticks() resolution, default: ms).

Return Value: Nothing.

Example call
start_CAN(10);

13.1.2. initiate_transmission

Initiates message transmission for the specified element on the specified CAN
bus.

To initiate transmission
e Call void initiate_transmission (uchar8 bus_id, uchar8 element)
where

e bus_id is the index for the CAN bus, either CAN_BUS1 IDENTIFIER,
CAN_BUS2 IDENTIFIER, etc.

e element (base 0) is the CAN message element index.
Return Value: Nothing.

Example call

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 59 of 112

http://www.parker.com/

Header Link to TOC

initiate_transmission(CAN_BUS1 IDENTIFIER, 5);

13.1.3. insert_receive_CAN_message

Allows a CAN message to be programmatically inserted into the CAN message
receive queue, for processing as if it was received via the CAN bus.

To insert CAN message into queue

e Call void insert_receive CAN message (uchar8 bus_id, uint32
identifier, boolean extended, CAN_DATA_PTR msg_data, uchar8
msg_size)

where

bus_id is the index for the CAN bus, either CAN_BUS1 IDENTIFIER,
CAN_BUS2_IDENTIFIER, etc.

element (base 0) is the CAN message element index.

bus_id The index for the CAN bus, either CAN_BUS1 IDENTIFIER,
CAN_BUS2_IDENTIFIER, etc.

identifier is the CAN identifier.

extended is the TRUE (29 bit extended ID), FALSE (11 bit standard
ID).

msg_data is the message data.

msg_size isthe message size, number of bytes in message (8 max).
Anything over 8 will get truncated.

Return Value: Nothing.

Example call

initiate_transmission(CAN_BUS1_ IDENTIFIER, 5); uchars8
msg_data[8] = {1,2,3,4,5,6,7,8};

insert_receive_CAN_message(CAN_BUS1_ IDENTIFIER, Ox18FFO0DO, TRUE,
msg_data, 8);

13.1.4. set_CAN_offline_mode

Adjusts the offline functionality of the CAN driver. When enabled, process
transmit messages even when offline.

To set the CAN into offline mode

e« Call void set_CAN_offline_mode (uchar8 bus_id, boolean
new_state) where

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 60 of 112

http://www.parker.com/

Header Link to TOC

13.1.5.

e bus_id is the index for the CAN bus, either CAN_BUS1 IDENTIFIER,
CAN_BUS2_IDENTIFIER, etc.

e new_state TRUE (process transmit message even when offline),
FALSE (do not process message when offline, default).

Return Value: Nothing.

Example call
// Enable CAN offline mode.
set_CAN_offline_mode(CAN_BUS1_IDENTIFIER, TRUE);

// Disable CAN offline mode.
set_CAN_offline_mode(CAN_BUS1_IDENTIFIER, FALSE);

change_CAN_bit_rate

Changes the CAN bit rate of the specified CAN bus. This can be called any time
after the CAN has been initialized to change the CAN bit rate.

To change the CAN bit rate of the CAN bus

e Calluint32 change CAN bit_rate (uchar8 bus_id, uint32 bit_rate)
where

e bus_id is the index for the CAN bus, either CAN_BUS1 IDENTIFIER,
CAN_BUS2 IDENTIFIER, etc.

e bit_rate isthe desired bit rate for the specified CAN bus (units
bits/sec).

Return Value:
* 0, if the CAN bus id is not supported.
* Current bit rate of the specified CAN port, if the bit rate is not supported.

* New bit rate of the specified CAN port, if the CAN bus id and bit rate are
supported.

NOTICE

Currently supported bit rate values for CAN2: 125kbps, 250 kbps, 400 kbps, 500 kbps
and 1Mbps

Currently supported bit rate values for CAN1: 250 kbps & 500 kbps Note, that
changing CAN1 Bit rate is effective onwards PFW version 2.15 Build 20.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 61 of 112

http://www.parker.com/

Header Link to TOC

Example calls
uint32 current_bit_rate;
if (change_CAN_bit_rate(CAN_BUS2_IDENTIFIER, 500000) == 500000)

{
// CAN BUS 2 bit rate successfully updated.

T
// Get the current bit rate for CAN2.

current_bit_rate = change_CAN_bit_rate(CAN_BUS2_IDENTIFIER, 0);

CAUTION

Should the CAN1 needs to have other bit rate than default value (250kbps) in end
application, then application developer/ System architect shall use special version of
BootBlock SW cm0711_bl_V500_00_Build_10.bin. Currently 500kpbs and 250kbps
baud rates are supported onwards PFW version 2.15 for CAN1.

Recovery mode (boot block backdoor) requires the use of a 500 kbps CAN capture
message on CANI1.

BootBlock SW cm0711_bl V500 _00 Build_10 is delivered as is and at the moment it
does not exist in default production variants of CM0711.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 62 of 112

http://www.parker.com/

Header Link to TOC

14. J1939 Stack Library

The J1939 stack allows you to transmit and receive J1939 messages over the
Controller Area Network (CAN).

The J1939 stack handles all of the network administration associated with J1939,
such as

e Transmitting and receiving standard messages

¢ Transmitting and receiving large messages (greater than 8 bytes in
length) automatically.

e Managing the J1939 network connection
¢ Claiming and protecting a source address

Header file(s) to include: pfw_j1939.h and pfw_can.h

r\il') NOTICE

Refer to section 8.3 CM0711 Software Parameters before using the services in this
section.

14.1. Overview for Using the J1939 Stack Library

There are several high-level steps that must be followed in a certain order to
make the J1939 Stack function properly, as follows (refer to the appropriate
sections for more details on each):

1. Initialize the J1939 stack

2. Create a transmit table

3. Define receive functions

4. Create a receive table

5. Use other J1939 services as needed

14.2. Initializing the Stack

Each J1939 stack must be initialized before it can be started and used.
There is two J1939 stacks available in CM0711 platform framework.

To initialize the J1939 stack, do the following:

1. Call j1939_initialize_stack function to set up the tables for sending and
receiving messages

2. Call j1939_claim_address to set the source address, which can be called again
later to change the source address (refer to section 14.4.1.2 31939_claim_address
for more details).

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 63 of 112

http://www.parker.com/

Header Link to TOC

3. Start the CAN layer. This must be done after the J1939 stack is initialized
otherwise the stack will not be recognized by CAN manager (refer to section
13.1.1 start_CAN -for more details).

14.3. Creating J1939 Tables

14.3.1.

Before being able to transmit or receive messages, you must create tables that
list the messages you want for each.

NOTICE

When creating your tables, there are some considerations you need to be aware of so
that you can program the product over J1939. Refer to section 8.4.1 “Making your
Application Compatible with the Parker Flash Loader Tool” -for information on
these considerations.

Creating a transmit table

Before being able to transmit messages, you need to create a transmit table
somewhere in the application files.

The transmit table contains a list of messages that can be transmitted by the
J1939 Stack.

NOTICE

A pointer to this table must be passed in as one of the parameters to the
J1939_initialize_stack function. Refer to chapter 14.2 j1939_initialize_stack -for
more details.

To create a transmit table

1. Define the following parameters for each J1939 message you want the J1939
Stack to be responsible for according to Table 7:

Table 7: Transmit Table Parameters

Parameter Type Description
bataPtr ucharg * Pointer to message data buffer
Size uint16 Number of bytes in message
data
1D uint32 For J1939 messages the
identifier field (ID) is always zero
(0)

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 64 of 112

http://www.parker.com/

Header Link to TOC

14.3.2.

14.3.2.1.

Parameter Type Description

xtnd boolean For J1939 messages the
extended field (xtnd) is always
TRUE

dirty boolean Set the dirty field to FALSE when
creating the table

PGN uint16 The message PGN

Rate uint16 Entering a value greater than 0
will cause your message to
automatically transmit at the
specified period (ms)

bP uchar8 Data page (0 or 1)

P uchar8 Priority, O (highest) to 7 (lowest)

Flag uint16 Always set flag to 0

Ticks uint32 The tick count when this
message was last sent — used for
periodic messages, initialize to 0

LMDA uchar8 Large message destination
address — only used for periodic
PDUL1 format messages

Example of a Transmit Table:

#define J1939_ APP_MESSAGE_COUNT 1

J1939TransmitMessage J1939 app_messages[J1939 APP_MESSAGE_COUNT] =

{

// DataPtr Size ID xtnd dirty PGN Rate DP P Flag

Ticks LMDA

{ {Diag_Buffer, J1939 MESSAGE_SIZE, O, TRUE, FALSE }, DIAGNOSTIC_COMMAND,
0, 0, 6,

0, 0, OXFF }
by

Creating a receive table

Before being able to receive messages, you need to create a receive table
somewhere in the application files. However, before you can create a receive
table, you need to define one or more receive functions.

Defining receive functions

Receive functions are the building blocks of the receive table, and must be
compatible with the J1939 Stack. The reason, is because receive functions are

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 65 of 112

http://www.parker.com/

Header Link to TOC

automatically called by the J1939 Stack when a message (with a PGN matching
the receive function in the receive table) is received by the Stack.

You can use the same receive function for multiple messages, or different receive
functions for each message.

If you use the same receive function for multiple messages, or if a PGN you
receive is transmitted by multiple sources, you must write the receive function so
it can determine which message is being processed.

To define a receive function that is compatible with the J1939 Stack, do the
following:

For each receive function (somewhere in your application)
1. Create a function that adheres to the following prototype:
e void <function name>(void * data); where

e data is a pointer to MessageData.

The following Table 8 illustrates the parameters found within MessageData:

Table 8: Message Data Parameters

Parameter Type Description

message_id uint32 Represents the CAN ID for the
message.

Since the message_id was
directly copied from the CAN
register, you must shift the bits
three times to the right before
using the message_id value.

If you assign the message_id
value to J1939ldentifier.identifier
you can decode the J1939 fields,
as shown in the example below.

parameteri uint32 The least significant 16bits of
parameter 1 represents the
number of data bytes in the
received J1939 message. The
most significant bit of parameter
1 is set when the message has a
29-bit identifier (always set for
J1939 messages).

parameter?2 uint32 A far pointer to the J1939
message data.
post_time uint32 The time (as reported by ticks())

the message was posted to the
J1939 stack.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 66 of 112

http://www.parker.com/

Header Link to TOC

Example for defining a receive function:

The following example illustrates how the message_id information, and
parameter2 (J1939 message data) can be obtained from data (the pointer to
MessageData), which is received as a parameter when the receive function is
called.

void J1939 ProcessMessage(void * data)

{

MessageData * message;

uchar8 * data_ptr;

uintlé msg_size;

/* initialize some pointers to make processing easier */

message = data; /* convert the data pointer to the proper type */

data_ptr = (uchar8 *)message->parameter2; /* assign our pointer to the
data */

msg_size = (uintl6)(message->parameterl); /* determine the size of the
message */

ek e e e e e e e e e ke e e e ke e e ke e e ke e e ke e e ke ke ke ke e ks ok
To determine what the fields of the J1939 message are, you can declare:
J19391dentifier msg_ID;

Once you have that, assign the ID with:

msg_ID.identifier = message->message_id >> 3;

Then:

msg_1D.J1939_ fields.J1939 DataPage

msg_1D.J1939_ fields.J1939 PF

msg_1D.J1939 fields.J1939 Priority

msg_1D.J1939_ fields.J1939 PS

msg_1D.J1939_ fields.J1939 Reserved

msg_1D.J1939 fields.J1939 SA

Represents the data page, the PF, priority, PS, reserved, and SA
fields of the received J1939 message.

**/

// do something with the data
}

Once you've defined your receive function

2. Create an object for each of your receive functions, so that the receive table
can access your receive functions.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 67 of 112

http://www.parker.com/

14.3.2.2.

Header Link to TOC

NOTICE

If you created a receive function for receiving multiple messages, you only have to
create one object. You then insert the object into the receive table as many times as
you need with an appropriate PGN for each entry.

Example for creating an object:

The following example shows how to create an object for the receive function that
was created in step 1:

const VTKObject canl_process_message object =

{
NULL, J1939 ProcessMessage, NULL, NULL

}:

Once you have defined your receive function(s), and their corresponding
object(s), you can create your receive table (refer to section 14.3.2 “Creating a
Receive Table” for more details).

Creating areceive table
This service is used to create a receive table.

NOTICE

A pointer to this table must be passed in as one of the parameters to the
j§1939_initialize_stack function (refer to section 14.4.1.1 j1939_initialize_stack
for more details).

To create a receive table

1. Define the following parameters for each J1939 message you want the J1939
Stack to be responsible for:

NOTICE

Your receive table must be sorted from smallest PGN to largest PGN, and must be
terminated by a NULL table entry (see example for more details).

Table 9: Receive Table Parameters

Parameter Type Description

pgn uint16 The received message PGN.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 68 of 112

http://www.parker.com/

Header Link to TOC

Parameter Type Description

ReceiveObjectPtr | VTKObject * This is a pointer to a function that
will handle the receiving of this
message (your receive function
for the specified PGN). In the
table, a pointer to the VTKObject
that points to your receive
function is included.

Example of Receive Table:

The following example builds on the two previous examples (defining a receive
function, and creating a receive object), and shows how they work together to
create the receive table.

#define DIAGNOSTIC_COMMAND OxEFOO

/* NOTE: this table MUST be ordered from smallest pgn to largest pgn to
allow the binary search to work correctly */

ProtocolRXTable J1939 Filters[] =

{
{ DIAGNOSTIC_COMMAND, &canl_process_message _object },

{ NULL, NULL } /* must terminate with a NULL */
}

14.4. Services
The sections that follow provide information for:
e Managing the J1939
¢ Transmitting messages
e Updating data in automatically transmitted messages
¢ Receiving messages

14.4.1. Managing the J1939
There are six services used to manage the J1939:
e |Initialize the J1939 stack (j1939_initialize_stack)
e Claim a J1939 source address (j1939_claim_address)
e Start the CAN layer (start_CAN)
o Get the J1939 stack status (j1939_get_status)
e Get a source address (j1939_get_source_address)
e Request messages (j1939_send_request)

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 69 of 112

http://www.parker.com/

14.4.1.1.

®

Header Link to TOC

j1939 initialize_stack
This service initializes the J1939 stack.

NOTICE

The function below must be called for each J1939 stack before the CAN layer can be
started (refer to chapter 13.1.1 start_CAN -for information on how to start the CAN
layer).

To initialize the J1939 stack

e Call void j1939 initialize stack(j1939 stack_id_t stack_id,
ProtocolRXTablePtr rx_table ptr, J1939TransmitMessagePtr tx_table_ ptr,

uintlé tx_table_size, uchar8 * rx_buff, uintlé rx_buff size); where

e stack_id is an enumerated type (J1939 STACK1 for CAN1 or
J1939_STACK2 for CAN2).

e rx_table_ptr is a pointer to the applications receive table (a table of
PGNs and the function for handling the reception of the PGN), refer to
section “Creating a Receive Table” for more information.

e tx_table_ptr is a pointer to the applications transmit table (a table of
PGNs that the application will send), refer to section 0 Creating a transmit
table for more information.

e tx_table_size isthe number of entries in the application's transmit table.

e rx_buff is a pointer to a buffer that the J1939 stack will use for storing
J1939 messages received via the transport protocol (messages larger
than 8 data bytes).

e rx_buff size isthe size of the rx_buff.

Return Value: Nothing.

Example call:

NOTICE

The undefined parameters used in this example are taken from previous examples.

The following example shows how to initialize the J1939 Stack.

#define LARGE_BUFF_SIZE 1800

uchar8 large_ buff[LARGE_BUFF_SIZE];

initialize_J1939 stack(J1939_STACK1l, &J1939 Filters, &J1939 app_messages,
J1939 APP_MESSAGE_COUNT, &large buff, LARGE_BUFF_SIZE);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 70 of 112

http://www.parker.com/

Header Link to TOC

14.4.1.2.

j1939 claim_address

This service executes the J1939 source address claim procedure. In J1939, each
node (module) requires a unique source address. In order to transmit J1939
messages, the J1939 stack must have a claimed source address.

NOTICE

If the source address is claimed, the stack will continue to protect the address.

To claim a J1939 source address

e Call void j1939 claim_address(j1939 stack_id_t stack id, uchar8 SA,
J1939Name * name); where

e stack_id is an enumerated type (J1939_STACK1 or J1939_STACK2). SA
is the source address (use OxFE as the SA if you do not want the stack to
claim an address).

e name is a pointer to the J1939 Name field that will be used during the
address claim.

Return Value: Nothing.

Example call:

NOTICE

The example also provides a sample of how to define a J1939 name and how to use
that when using the claim address service.

The following example illustrates how to use the J1939_claim_address service.
J1939Name name = { 0 };

// Set name using constants defined elsewhere.

name. ldentity_Number = J1939_1ID;

name.Man_Code = J1939_ MANUFACTURER_CODE;

name.J1939 NAME_FIELDS.name_fields.Vehicle_System Inst =
J1939 VEHICLE_SYSTEM_INSTANCE;

name.J1939 NAME_FIELDS.name_fields. Industry_Group = J1939_ INDUSTRY_GROUP;

name.J1939 NAME_FIELDS.name_fields.Arbitrary_ Address =
J1939_ARBITRARY_ADDRESS CAPABLE;

name.J1939_NAME_FIELDS.name_fields.Reserved = O;
name.J1939_NAME_FIELDS.name_fields.Vehicle_System = J1939 VEHICLE_SYSTEM;
name.J1939_NAME_FIELDS.name_fields.Function = J1939 FUNCTION;

name.J1939_ NAME_FIELDS.name_fields.ECU_Instance = J1939_ ECU_INSTANCE;
name.J1939_NAME_FIELDS.name_fields.Func_Instance = J1939_ FUNC_INSTANCE;
J1939 claim_address(J1939_STACK1, J1939 DESIRED_SA, &name);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 71 of 112

http://www.parker.com/

14.4.1.3.

14.4.1.4.

14.4.1.5.

Header Link to TOC

j1939 get_status
This service returns the current status of the J1939 stack.

To get the current status of the J1939 stack

e Call J1939ProtocolState j1939 get_status(j1939 stack id_t stack id);
where

e stack_id is an enumerated type (J1939 STACKL1 or J1939 STACK?2).

Return Value:

The J1939ProtocolState value is returned, which indicates the current status of
the stack, with possible values as follows:

* J1939_PROTOCOL_UNABLE_TO_SEND - an address has not yet been claimed, or
cannot be claimed - no TX ability.

* J1939_PROTOCOL_CLAIM_IN_PROGRESS - waiting for the results of the
address claim.

» J1939 PROTOCOL_READY - we have a valid source address and are alive
on the bus.

* J1939 PROTOCOL_ACTIVE - we are currently processing something.

Example call:
return_value = j1939 get status(J1939 STACK1l);

j1939 _get_source_address
This service returns the stack's source address.
To get the J1939 source address

e Call ucharg8 j1939 get_source_address(j1939 stack_id_t stack_id);
where

e stack _id is an enumerated type (J1939 _STACK1 or J1939 STACK2).

Return Value: The current source address being protected by the stack.

Example call:
return_value = J1939 get_source_address(J1939 STACK1l);

j1939_send_request
This service is used to request a message from another device.

To request a message from another device

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 72 of 112

http://www.parker.com/

Header Link to TOC

14.4.2.

14.4.2.1.

14.4.2.2.

e Call j1939 send_request(j1939 stack_id_t stack_id, uintl6
requested_pgn, uchar8 dest); where o stack_id is an enumerated type
(J1939 _STACK1 or J1939 STACK?2).

e requested pgn is the PGN to request.
e dest is the destination address (use OxFF for J1939 broadcast).

Return Value: Nothing.

Example call:

The following example shows a sample request for PGN 0xFFO0O0, from source
address OxEO.

J1939 send_request(J1939_ STACK1l, OxFFOO, OxEOQ); // request pgn OxFFOO
from source address OxEO

Transmitting messages
There are two ways to transmit messages:

» Automatically: used when you want the stack to automatically send periodic
messages

» Manually: used to control when messages are sent by the stack
(31939_send)

Transmitting messages automatically
This service is used to transmit messages automatically.

To automatically transmit a message
e Specify a non-zero rate in the transmit table.

To automatically transmit a PDU1 message with a specific destination address,
do one of the following:

o Ifitis alarge message, specify the destination address in the LMDA field
of the transmit table.

e [Ifitis not a large message, include the destination address in the PDU
specific portion of the specified PGN.

NOTICE

To update data in an automatic message, refer to section 14.4.3 “Updating Data in
Automatically Transmitted Messages”.

Transmitting messages manually (J1939_send)
This service is used to transmit messages manually.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 73 of 112

http://www.parker.com/

14.4.3.

14.4.3.1.

Header Link to TOC

To transmit a message manually

e Call void j1939 send(j1939 stack id_t stack_id, uintl6 msg_index,
uchar8 dest); where

e stack_id is an enumerated type (J1939 STACKI1 or
J1939_STACK2).

e msg_index isthe message from the transmit table where 0O is the first,
1 is the second, etc.

e dest is the destination address, if applicable (broadcast or global
address is 255 (OxFF)).

Return Value: Nothing.

Example call:

This example shows a sample call to instruct the stack to send the first message
in the transmit table with a destination address of OxFF (global / broadcast).

j1939_send(J1939_STACK1, 0, OXFF);

Updating data in automatically transmitted messages

This section describes how to update data in a message that is being sent
automatically.

Two services are required to update data for automatically transmitted messages:
e Stop transmitting an automatic message (j1939_updating_message)

¢ Resume transmitting an automatic message
(J1939_finished_updating_message)

NOTICE

Before updating your data, you need to call j1939_updating_message. Once you've
updated the data, you need to call j1939_finished_updating_message to complete
the update.

J1939 updating_message

This service tells the stack to stop sending an automatic message until
jJ1939_finished_updating_message is called, which allows you to update the data
in the message.

To stop the stack from sending an automatic message

e Call j1939 updating_message(j1939 stack id_t stack_id, uintl6
msg_index); where

e stack_id is an enumerated type (J1939 STACK1 or J1939 STACK?2).

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 74 of 112

http://www.parker.com/

Header Link to TOC

14.4.3.2.

14.4.4.

e msg_index is the message from the transmit table where 0 is the first, 1
is the second, etc.

Return Value: Nothing.

Example call:
J1939 updating_message(J1939_STACK1, 0);

J1939 finished_updating_message

This service tells the stack that the data for the automatic message has been
updated, and to resume sending the message.

To resume sending an updated message
e Call j1939 finished_updating message(j1939 stack id_t stack_id,
uintlé msg_index); where
e stack_id is an enumerated type (J1939_STACK1 or J1939_STACK?2).

e msg_index is the message from the transmit table where 0 is the first,
1 is the second, etc.

Return Value: Nothing.

Example call:

The following example illustrates how j1939_finished_updating_message (in
conjunction with j1939 updating_message) should be used when updating data in
a transmit message (Message_Buffer in this example).

J1939 updating_message(J1939_STACK1, 0);
Message Buffer[0] = 1;
J1939 finished_updating_message(J1939 STACK1l, 0);

Receiving messages
When a message is received, you need to determine whether or not it is seen by
the application (you need to filter the message).

There are two ways to filter a message:

» Automatically: used when you want the stack to automatically filter received
messages using the receive table (if needed, refer to section 14.3.2.2
“Creating a receive table”).

» Manually: used when you want to manually filter received messages
(J1939_register_receive_all_object).

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 75 of 112

http://www.parker.com/

14.4.4.1.

14.4.5.
14.4.5.1.

Header Link to TOC

J1939 register_receive_all_object

This service is used to specify a function that will be called when J1939
messages are received by the stack, for the purpose of receiving all messages.

NOTICE

Messages received by the J1939_register_receive_all_object are still processed by the
stack, and possibly passed to a receive function (specified in the receive table) if the
received message matches a PGN specified in the receive table.

To receive all messages

e Call j1939 register_receive all_object(j1939 stack id_t stack_id,
const VTKObject * obj); where

e stack_id is an enumerated type (J1939_STACK1 or J1939_STACK?2).

e obj is a pointer to a VTKObject that contains points to a receive
function (see receive table section for details on receive functions and
receive function object(s)). To un-register a receive object, call this
function again with obj set to NULL.

Return Value: Nothing.

Example call:

The following example illustrates how a receive function can be converted to an
object, and then used to receive all messages for a specific J1939 stack:

void J1939 ReceiveAll(void * data)
{

// process data

}

const VTKObject receive_all_object =

{
NULL, J1939 ReceiveAll, NULL, NULL

};
J1939 register_receive_all_object(J1939 _STACK1, &receive_all_object);

Administration message setting

j1939 set_admin_msg_on_transmit
Sets the on_transmit event for all of the admin messages sent by the stack.

To set the transmit event for admin messages

e« Call void j1939 set_admin_msg_on_transmit (j1939 stack_id_t
stack_id, CAN_OnTransmitPtr function_ptr)

where

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 76 of 112

http://www.parker.com/

Header Link to TOC

e stack_id is the J1939 stack to use.

e function_ptr is a pointer to a function (CAN_onTransmitPtr) called
when a message is setup, just prior to being sent.

Return Value: Nothing.

Example call:
j1939_set_admin_msg_on_transmit(J1939_STACK1, on_transmit);

14.4.5.2. j1939 set_admin_msg_on_transmit_complete
Sets the on_transmit_complete event for all of the admin messages sent by the
stack.

To receive all messages

e Call void j1939 set_admin_msg_on_transmit_complete (
J1939 stack_id_t stack_id, CAN_OnTransmitCompletePtr

function_ptr)
where
e stack_id is the J1939 stack to use.

e function_ptr is a pointer to a pointer to a function
(CAN_OnTransmitCompletePtr) called after message has been

sent.
Return Value: Nothing.

Example call:

J1939 set_admin_msg_on_transmit_complete(J1939_STACK1,
on_transmit_complete);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 77 of 112

http://www.parker.com/

Header Link to TOC

15. Generic CAN Stack

The Generic CAN stack allows you to transmit and receive standard 11bit CAN

messages.

Header file(s) to include: pfw_can_stack.h

15.1. Overview for Using the Generic CAN Stack

There are several high-level steps that must be followed in a certain order to

make the generic CAN stack function properly, as follows (refer to the appropriate

sections for more details on each):
1. Initialize the generic CAN stack
2. Create a transmit table
3. Define receive functions
4. Create a receive table

15.2. Initializing the Generic CAN Stack

Each generic CAN stack must be initialized before it can be started and used.

There are two standard (Generic) stacks available in CM0711 platform
framework.

To initialize the generic stack, do the following:

1. Call init_can_stack function to set up the tables for sending and receiving
messages (refer to section 15.4.1 init_can_stack for more details).

15.3. Creating STD Tables

15.3.1.

®

Before being able to transmit or receive standard messages (with 11 bit
identifiers), you must create tables that list the messages you want for each.

Creating a transmit table for standard messages

Before being able to transmit 11bit messages, you need to create a transmit table

somewhere in the application files.

The transmit table contains a list of messages that can be transmitted by the
generic CAN stack.

NOTICE

A pointer to this table must be passed in as one of the parameters to the
init_can_stack function (15.4.1 init_can_stack -for more details).

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 78 of 112

http://www.parker.com/

Header Link to TOC

To create a transmit table

1. Define the following parameters for each std message (can message with 11
bit identifier) you want the generic CAN stack to be responsible for according to
Table 10:

Table 10: Transmit Table Parameters

Parameter Type Description

data uchar8 * Pointer to the data that message

transmits

data_size uint16 Number of bytes in message data

identifier uint32 The identifier for this message

(11bit message id).

xtnd boolean For std messages the extended
field (xtnd) is always FALSE

dirty boolean Set the dirty field to FALSE when
creating the table

on_transmit boolean Pointer to a function called when a
message is set up, just prior to
being sent.

on_transmit_complete | void Pointer to a function called after
message has been sent.

repeat_period uint16 How often the message is
transmitted (in ms) - if it's O, the
message is not sent automatically.

Updating uint16 Flag indicating that message data
is being updated. While updating,
the message is not sent
automatically.

Example of a transmit table:

#define NUM_CAN_1_STD MSGS 1 2

static uchar8 test_sw_response_1[8] = {0,0,0,0,0,0,0,0};
static uchar8 test_sw_response_2[8] = {0,0,0,0,0,0,0,0};

CAN_Stack_Tx_Message can_1 std_messages_1[NUM_CAN_1 STD MSGS 1] =
{

/* data, data_size, identifier, extended, dirty, on_transmit,
on_transmit_complete, repeat_period, updating */

{ test_sw _response_1, 8, 0x011, FALSE, FALSE, NULL, NULL, 1000, O },
{ test_sw_response_2, 8, 0x101, FALSE, FALSE, NULL, NULL, O, O },

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 79 of 112

http://www.parker.com/

Header Link to TOC

15.3.2. Creating areceive table

Before being able to receive standard messages (with 11bit identifiers), you need
to create a receive table somewhere in the application files. However, before you
can create a receive table, you need to define one or more receive functions.

15.3.2.1. Defining receive functions

Receive functions are the building blocks of the receive table, and must be
compatible with the CAN Stack. The reason, is because receive functions are
automatically called by the CAN Stack when a message (with a ID matching the
receive function in the receive table) is received by the Stack.

To define a receive function that is compatible with the CAN Stack, do the
following:

For each receive function (somewhere in your application)
1. Create a function that adheres to the following prototype:
e void <function name>(void * data); where

e data is a pointer to MessageData.
The following (Table 11) illustrates the parameters found within MessageData:

Table 11: MessageData Parameters (11bit CAN id)

Parameter Type Description

message_id uint32 Represents the CAN ID for the
message.

parameteri uint32 The number of data bytes in the
received CAN message

parameter?2 uint32 A far pointer to the CAN
message data.

post_time uint32 The time (as reported by ticks())
the message was posted to the
CAN stack

Example for defining a receive function:

The following example illustrates how the message_id information, and
parameter2 (CAN message data) can be obtained from data (the pointer to
MessageData), which is received as a parameter when the receive function is
called.

void standard_can_recv_all(void * data)

{

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 80 of 112

http://www.parker.com/

Header Link to TOC

15.3.2.2.

v

volatile MessageData * message = (MessageDataPtr) data;
char *msg_data = (char*)message->parameter2;
uintlé msg_size = (uintl6)(message->parameterl);
uint32 msgid = (uint32)(message->message_id);
ke e e ke ke e e e ek e ke ek e ke ke e ke ek e ke ke ke e ke ek e ke ke ke ke ke ke ke ke ok f
// do something with the data
if((0x10) == msgid)
{
x=msg_data[0];
y=msg_data[1];

Once you've defined your receive function

2. Create an object for each of your receive functions, so that the receive table
can access your receive functions.

Example for creating an object:

The following example shows how to create an object for the receive function that
was created in step 1:

VTKObject standard_can_recv_all_obj =

{
NULL, standard_can_recv_all, NULL, NULL

}:

Once you have defined your receive function(s), and their corresponding
object(s), you can create your receive table (refer to section 15.3.2 Creating a
Receive Table for more details).

Creating a receive table
This service is used to create a receive table.

NOTICE

A pointer to this table must be passed in as one of the parameters to the
init_can_stack function (refer to section 15.4.1 init_can_stack for more details).

To create a receive table

1. Define the following parameters for each standard 11bit message you want
the CAN Stack to be responsible for:

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 81 of 112

http://www.parker.com/

Header Link to TOC

KE) NOTICE

Your receive table must be sorted from lowest identifier to highest identifier, and
must be terminated by a 0 identifier and object pointer NULL table entry (see
example for more details).

Table 12: Receive Table Parameters

Parameter Type Description
identifier uint32 The received message identifier.
ReceiveObjectPtr | VTKObject * This is a pointer to a function that

will handle the receiving of this
message (your receive function
for the specified CAN-id). In the
table, a pointer to the VTKODbject
that points to your receive
function is included.

Example of Receive Table:

The following example builds on the two previous examples (defining a receive
function, and creating a receive object), and shows how they work together to
create the receive table.

/* NOTE: this table MUST be ordered from lowest identifier to highest
identifier to allow the binary search to work correctly */

CAN_Stack Rx _Table can_1 std rx[] =

{
{ 0x010, &standard_can_recv_all_obj },

{ 0x110, &standard_can_recv_all_obj },
/* the list MUST be NULL terminated */
{ 0, NULL 3

};

15.4. Services
The sections that follow provide information for:
o CAN stack initialization
¢ Transmitting messages
e Updating data in automatically transmitted messages

15.4.1. init_can_stack
This service initializes the generic CAN stack.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 82 of 112

http://www.parker.com/

Header Link to TOC

15.4.2.

Each CAN stack must be initialized before it can be started and used.
init_can_stack() function is called to set up the tables for sending and receiving
messages.

NOTICE

The function below must be called for each stack before the CAN layer can be
started. In section 13.1.1 start_CAN -for information on how to start the CAN layer).

To initialize the stack

» Call boolean init_can_stack(CAN_stack_id_t can_port,
CAN_Stack_Rx_Table *rx_table, CAN_Stack Tx Message *tx_table,
uchar8 tx_count); where

e can_port is an enumerated type (CAN_STD_STACK1 Or CAN_STD_STACK2).

e *rx_table is a pointer to the receive table (a table of identifiers and the
function for handling the reception of the identifier),

refer to section 15.3.2 Creating a Receive Table for more information.

e *tx_table is a pointer to the transmit table (a table of CAN identifiers that
the application will send), refer to section 15.3.1 Creating a Transmit
Table for standard messages.

e tx_count is count of messages in the transmit table.

Return Value: TRUE if passed. FALSE if failed or can stack not supported.

Example call:

NOTICE

The undefined parameters used in this example are taken from previous examples.

The following example shows how to initialize the CAN Stack

init_can_stack(CAN_STD_STACK1l, can_1_std_rx, can_1_std_messages_1,
NUM_CAN_1_STD_MSGS_1);

}:

Transmitting messages
There are two ways to transmit messages:

» Automatically: used when you want the stack to automatically send periodic
messages

» Manually: used to control when messages are sent by the stack
(send_can_message)

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 83 of 112

http://www.parker.com/

15.4.2.1.

15.4.2.2.

15.4.3.

Header Link to TOC

Transmitting messages automatically
This service is used for transmit messages automatically.
To automatically transmit a message

e Specify a non-zero rate in the transmit table.

NOTICE

To update data in an automatic message, refer to section 0 Updating Data in
Automatically Transmitted Messages.

Transmitting messages manually (send_can_message)
This service is used to transmit messages manually.

To transmit a message manually

e Call boolean send_can_message(CAN_stack_id_t can_port, uchar8
message_idx); where

e can_port is an enumerated type (CAN_STD_STACK1 Or CAN_STD_STACK2).

e nmessage_idx IS the message from the transmit table where 0 is the
first, 1 is the second, etc.

Return Value: TRUE if passed. FALSE if failed or can stack not supported.

Example call:

This example shows a sample call to instruct the stack to send the first message
in the transmit table.

send_can_message(CAN_STD_STACK1, 0);

Updating data in automatically transmitted messages

This section describes how to update data in a message that is being sent
automatically.

Two services are required to update data for automatically transmitted messages:
e Stop transmitting an automatic message (updating_can_message)

¢ Resume transmitting an automatic message
(Finished_updating_can_message)

NOTICE

Before updating your data, you need to call updating_can_message. Once you've
updated the data, you need to call finished_updating_can_message to complete the
update.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 84 of 112

http://www.parker.com/

Header Link to TOC

15.4.3.1. updating_can_message

This service tells the stack to stop sending an automatic message until
finished_updating_can_message is called, which allows you to update the data in
the message.

To stop the stack from sending an automatic message

e Call boolean updating_can_message(CAN_stack_id_t can_port, uchar8
message_idx); where

e can_port is an enumerated type (CAN_STD_STACK1 Or CAN_STD_STACK2).

e nmessage_idx IS the message from the transmit table where 0 is the
first, 1 is the second, etc.

Return Value: TRUE if passed. FALSE if failed or can stack not supported.

Example call:
updating_can_message(CAN_STD_STACK1l, 0);

15.4.3.2. finished_updating_can_message

This service tells the stack that the data for the automatic message has been
updated, and to resume sending the message.

To resume sending an updated message

e Call boolean finished updating_can_message(CAN_stack_id_t can_port,
uchar8 message_idx); where

e can_port is an enumerated type (CAN_STD_STACK1 Or CAN_STD_STACK2).

e nmessage_idx is the message from the transmit table where 0 is the
first, 1 is the second, etc.

Return Value: TRUE if passed. FALSE if failed or can stack not supported.

Example call:

The following example illustrates how finished_updating_can_message (in
conjunction with updating_can_message) should be used when updating data in a
transmit message (Message_Buffer in this example).

updating_can_message(CAN_STD_STACK1, 0);
Message Buffer[0] = 1;
finished_updating_can_message(CAN_STD_STACK1l, 0);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 85 of 112

http://www.parker.com/

Header Link to TOC

16. Input Manager

The purpose of the Input Manager is to process raw input data so that it is
usable. The Input Manager enables automatic input sampling, filtering and
converting of data from any type of data source.

r\i-l') NOTICE

Each input can be defined to use any function for the three operations (sampling,
filtering and converting), making the input manager flexible. Some commonly used
functions for sampling, filtering and converting are included, but the user can
provide other functions as required.

Header file(s) to include: pfw_input_mgr.h

16.1. Overview

This section provides information for the following:
e Creating an input table
e Initializing the input manager
e Using the input manager to sample, filter, and convert data.

16.2. Creating an Input Table

Before the Input Manager can be initialized, a table that describes all of the inputs
it is responsible for must be created.

r\i-l') NOTICE

You are responsible for allocating the resources, and defining the content for this
table.

To create the Input Table

o Define the following parameters on Table 13: Input Table Parameters for
each input that you want the input manager to be responsible for.

Table 13: Input Table Parameters

Parameter Description

object The name of the object and an identifier - a
debugging aid input_sampling

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 86 of 112

http://www.parker.com/

Header Link to TOC

Parameter Description

Input_sampling Determines when the input manager
samples the input source where the
following applies:

INPUT_NO_SAMPLE - don't sample
INPUT_SAMPLE - sample at the table rate
INPUT_SAMPLE_DIV2 — sample at 1/2 the

table rate

INPUT_SAMPLE_DIV3 — sample at 1/3 the
table rate

INPUT_SAMPLE_DIV4 — sample at % the
table rate

INPUT_SAMPLE_DIV5 — sample at 1/5 the
table rate

INPUT_SAMPLE_DIV6 — sample at 1/6 the
table rate

INPUT_SAMPLE_DIV7 — sample at 1/7 the
table rate

INPUT_SAMPLE_DIV8 — sample at 1/8 the
table rate

INPUT_SAMPLE_DIV9 — sample at 1/9 the
table rate

INPUT_SAMPLE_DIV10 — sample at 1/10
the table rate

Input_raw Location for storing the raw input data.

input_filtered Location for storing the filtered data.

Input_converted Location for storing the converted data.

read_operation The read operation to perform on the source

input.

read_params The read parameters.

Filter_operation The filter operation to perform on the raw

input.

filter_params The filter parameters.

converter_operation The conversion operation to perform on the
raw/filtered input.

converter_params The conversion parameters.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 87 of 112

http://www.parker.com/

Header Link to TOC

f\y NOTICE

The input manager's built in read_operation, filter_operation, and
converter_operation functions can be used to facilitate input configuration (refer to
the pfw_input_mgr.h header file for details).

Example of an input table:

r\i-l') NOTICE

The example uses services from section 0 Inputs Library.

The following example is a simple input table that contains only one entry and
one operation, which is a read operation.

hw_din_value_t Din[1];

hw_din_params_t Dinl_Params = { INPUT1 };
input_object_t inputs_table[l] =

{

{ { "Inputl™, INPUT_1 }, INPUT_SAMPLE, Din + O, NULL, NULL,
read_din_value, &Dinl_Params,

NULL, NULL, NULL, NULL %},
}:

16.3. Initializing the Input Manager

Once you've created an Input Table that describes all of the inputs the Input
Manager is responsible for, you must initialize (start) the Input Manager.

To Initialize the Input Manager

e Call boolean input_mgr_init(input_object_t * input_table, uintl6
input_count, uintl6 sample_rate); where

e input_table is a pointer to a table of inputs.
e input_count is the number of inputs in the table.

e sample_rate Iis the rate at which the input manager performs its
sampling, in milliseconds.

Return Value: Input Manager Initialization Status where

* Non-zero indicates success.
« 0 indicates failure.

Example of initializing the input manager:

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 88 of 112

http://www.parker.com/

Header Link to TOC

return_value = input_mgr_init(inputs_table, 1, 50 /* ms */);

16.4. Obtaining Sampled, Filtered, and Converted
Data

The Input Manager samples, filters, and converts data.

There are three methods that can be used to obtain sampled, filtered, and
converted data with the input manager, as follows:

o Refer to the data storage location for the input, as specified in the input
table.

e Use the general service
O input_get value.

e Use one of the specific services:
O input_get_raw_value,
O input_get_Tfiltered_value

O input_get_converted_value

r\i-l') NOTICE

Refer to section 12.1 “Services” and its sub chapters for using the service
input_get value.

16.4.1. Getting input data by referring to a data storage location

Referring to a data storage location is the most efficient way to obtain data using
the Input Manager.

f\y NOTICE

In order to use this method, you must know the specific storage location for the
input.

To get input data by referring to a data storage location

o Refer to the respective data storage location for the input, as specified in
the input table.

r\i-l') NOTICE

If an input is not configured to be sampled by the input manager, then just
referencing the respective data storage location is not sufficient, and a call to
input_get_value is required to force the required operation(s) to occur.

Example call:

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 89 of 112

http://www.parker.com/

16.4.2.

®

Header Link to TOC

The following example assumes an input table already exists, and that it is
configured to store the state of INPUT_1 in Din[0].

if (*Din[0])
{

// INPUT_1 raw value is non-zero ...

}

Getting input data by calling input_get_value

NOTICE

Using this method forces inputs set to INPUT_NO_SAMPLE to sample, filter, and convert
when input_get_value is called. To use this method, you do not need to know the
specific storage location for the input.

To get input data by calling input_get_value

e Call 1data_ptr_t input_get_value(uintl6 input, input_request_t
request) ; where

e input is the index of the input within the input table (for example, 0 is
the first input, 1 is the second, etc.).

e request is the type of data request, where the following values apply:
e INPUT_RAW is the raw value from the last sample.
e INPUT_FILTERED is the filtered value from the last sample.
e INPUT_CONVERTED is the converted value from the last sample.
e INPUT_REALTIME_RAW is the raw value after forcing a read.
e INPUT_REALTIME_FILTERED is the filtered value after forcing a read.

e INPUT_REALTIME_CONVERTED is the converted value after forcing a
read.

Return Value: A pointer to the requested data where
¢ NULL indicates the operation failed.

Example call:

hw_din_value_ptr_t input_1_ value_ptr = input_get value(INPUT_1,
INPUT_RAW) ;

if (*input_1_value_ptr)

{
// input on ...

}

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 90 of 112

http://www.parker.com/

Header Link to TOC

16.4.3. Getting input data by using a specific service

This section describes how to get the most recently sampled value of an input in
each of the following states:

o Raw data (input_get_raw_value)
o Filtered data (input_get_filtered_value)
o Converted data (input_get_converted_value)

16.4.3.1. input_get_raw_value
This service is used to return raw input data.

To get the most recently sampled value of an input in its raw state
e Call idata_ptr_t input_get_raw_value(uintl6 input); where

e input is the index of the input within the input table (for example, 0 is
the first input, 1 is the second, etc.).

Return Value: A pointer to the data requested where
e NULL pointer indicates the operation failed.

Example of getting a raw state input value:

hw_din_value_ptr_t input_1 value_ptr = input_get _raw_value(INPUT_1);
if (Cinput_1_value_ptr)

{

// input raw state is non-zero (on) ...

}

16.4.3.2. input_get filtered value
This service is used to return filtered input data.

To get the most recently sampled value of an input in its filtered state
e Call idata_ptr_t input_get_filtered_value(uintl6 input); where

e input is the index of the input within the input table (for example, 0 is
the first input, 1 is the second, etc.).

Return Value: A pointer to the data requested where
e NULL pointer indicates the operation failed.

Example of getting a filtered input value:

hw_din_value_ptr_t input_1 value_ptr = input_get filtered_value(INPUT_1);
if (*input_1_value_ptr)

{

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 91 of 112

http://www.parker.com/

16.4.3.3.

16.4.4.

16.4.4.1.

Header Link to TOC

// input filtered state is non-zero (on) ...

}

input_get_converted_value
This service is used to return converted input data.

To get the most recently sampled value of an input in its converted state
e Call idata_ptr_t input_get_ converted _value(uintl6 input); where

e input is the index of the input within the input table (for example, 0 is
the first input, 1 is the second, etc.).

Return Value: A pointer to the data requested where
¢ NULL pointer indicates the operation failed.

Example of getting a converted input value:

hw_din_value_ptr_t input_1 value_ptr = input_get_ converted
_value(INPUT_1);

if (Cinput_1_value_ptr)
{

// input converted state is non-zero (on) ...

}

Commonly used read, filter and conversion services

read_bit_uchar8

This service is for checking the state of one bit at the specified memory location.
The bit and address(port) are specified in the read parameters.

The state of the bit is stored in data_ptr as a 1 or O.

To check the state of one bit in specified memory location:

e Call void read bit_uchar8 (const idata_ptr_t data ptr, const
input_read_params_ptr_t params) Where

e data_ptr is a pointer to the state of the bit.

e params are the read parameters including the specified address(port)
and bit (see read_bit_params_uchar8 _t).

Return value: Nothing, but the result is stored in data_ptr

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 92 of 112

http://www.parker.com/

Header Link to TOC

16.4.4.2.

16.4.4.3.

Example Call:
read_bit_uchar8(data_ptr, params);
if(*data_ptr)
{
// The state of the bit is 1.

read_bit_uint16, read_bit_uint32

Checks the state of one bit at the specified memory location.The bit and
address(port) are specified in the read parameters. The state of the bit is stored
in data_ptrasal orO.

To check the state of one bit in specified memory location:

o Call void read bit uintlé (const idata_ptr_t data ptr, const
input_read_params_ptr_t params) Where

e data_ptr is a pointer to the state of the bit.

e params are the read parameters including the specified address(port)
and bit (see read_bit_params_uint16_t).

You may need to use read_bit_uint32 instead of read bit_uintl6. However,
the format is the same. Replace the function with desired type in your application
in such case. For params - see read_bit _params_uint32_t

Return value: Nothing, but the result is stored in data_ptr

Example Call - read_bit_uint16 used in here as example:
read_bit_uintl6(data_ptr, params);
if(*data_ptr)
{
// The state of the bit is 1.

read buf uchar8

This service copies the specified number of memory locations from the source to
the destination address. The source address and the number of locations to copy
are specified in the read parameters.

To copy memory locations:

o Call void read buf uchar8 (const idata_ptr_t data ptr, const
input_read_params_ptr_t params) Where

e data_ptr is a pointer to the destination address.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 93 of 112

http://www.parker.com/

16.4.4.4.

16.4.4.5.

Header Link to TOC

e params are the read parameters including the specified sourse
address and number of locations to copy (see
read_buf_params_uchar8_t).

Return value: Nothing, but the result is stored in data_ptr

Example Call:

read_buf_uchar8(data_ptr, params);

read_buf uintl6, read buf uint32

This service copies the specified number of memory locations from the source to
the destination address. The source address and the number of locations to copy
are specified in the read parameters.

To copy memory locations:

e Call void read buf uintlé (const idata_ptr_t data ptr, const
input_read_params_ptr_t params) Where

e data_ptr is a pointer to the destination address.

e params are the read parameters including the specified source
address and number of locations to copy (see
read _buf params_uint16 t).

You may need to use read_buf_uint32 instead of read_buf uintl6. However,
the format is the same. Replace the function with desired type in your application
in such case. For params - see read_buf_params_uint32_t.

Return value: Nothing, but the result is stored in data_ptr

Example Call - read_buf_uint16 used in here as example:
read_buf_uintl6(data_ptr, params);

din_debounce_filter

Performs debounce filtering on a digital input. The debounce parameters are
specified in the filter paramters structure and includes the increment and
decrement steps, the upper and lower bounds where the result changes, the min
and max counts and a pointer to a counter where the current count is stored.

To perform debounce filtering for digital input

e Call void din_debounce_filter (const idata_ptr_t dst_data,
const idata _ptr_t src_data, const input_filter_params_ptr_t
params) Wwhere

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 94 of 112

http://www.parker.com/

Header Link to TOC

16.4.4.6.

16.4.4.7.

e dst_data If the count has reached the upper change point - change
*dst_data to 1.

¢ If the count has reached the lower change point - change *dst_data to
0.

e src_data is the digital input to be debounce filtered.

e params are the debounce parameters (see
din_debounce_filter_params_t).

Return Value: Nothing is returned but the result is stored in dst_data.

Example of debounce filtering

din_debounce_filter(dst_data, src_data, params); // Performs debounce
filtering on *src_data.Returns

running_average

This service performs a running average on an input. The parameters used for
averaging are specified in the filter parameters structure and the number of
samples to base the average on, an index that indicates the oldest sample, a
sum of the samples and a pointer to the samples.

To get the running average on an input

e Call void running_average (const idata_ptr_t dst data, const
idata_ptr_t src_data, const input_filter_params_ptr_t params)

where

e dst_data iS a pointer to the average value.

e src_data is the input to run average on.

e params are the parameters used for averaging (see
running_average_params_t).

Return Value: Nothing is returned but the result is stored in dst_data.

Example call
running_average(dst_data, src_data, params);

// Stores the average value into dst_data.Returns

convert_linear_sint32

This service performs linear conversion on an input in the form of y = mx/n + b.
The parameters are specified in the convert paramters structure and include
slope and intercept.

To perform a linear conversion on an input

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 95 of 112

http://www.parker.com/

Header Link to TOC

e Call void convert_linear_sint32 (const idata ptr_t dst_data,
const idata_ptr_t src_data, const input_convert_params_ptr_t

params) where

e dst_data A pointer to the converted value.

e src_data The input to performs linear conversion on.

e params The parameters used for converting (see
convert_linear_params_t).

Return Value: Nothing is returned but the result is stored in dst_data.
Example call

convert_linear_sint32(dst_data, src_data, params);

// Stores the converted value into dst_data.Returns

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 96 of 112

http://www.parker.com/

Header Link to TOC

17. FLASH

17.1. Overview

The flash module (pfw_flash.h) provides an interface for writing to and erasing
flash. File reference: pfw_flash.h ; stypes.h. Please refer to hw_config.h for details
about the platform’'s memory architecure for the flash_write(), flash_read() and
flash_erase_sector() function calls.

Ki) NOTICE

Refer to section 8.1 CM0711 Memory Map to clarify the available memory areas and
to chapter 8.2 Fixed Addresses for memory locations with static data.

17.2. Flash Functions

This section provides you information how to:
- Initialize the Flash memory void flash_init (void)

- Write to Flash memory uintlé flash write (uint32 base_address,
uint32 offset, uchar8 *buffer, uintl6 size)

- Read from Flash memory uint16 flash_read (uint32 base_address,
uint32 offset, uchar8 *buffer, uintl6 size)

- Erase the Flash memory boolean flash_erase _sector (uint32
base_address, uint32 sector)

17.2.1. flash_init

Initialize internal and external flash memories. Call this once before using any
other flash functions.

To initialize the Flash -memory
e Call void flash_init (void)

Return Value: Nothing

Example call
flash_init();

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 97 of 112

http://www.parker.com/

Header Link to TOC

17.2.2. flash_write

Writes data to flash memaory. Note there are some areas of flash that the
application may not be allowed to write to (such as the bootblock).

To write to Flash - memory

e Calluint16 flash_write (uint32 base address, uint32 offset,
uchar8 * buffer, uintlé size) where

e base_address is the start address of the section of flash to be
modified.

e Offset is the start address of memory that is written to is
"base_address + Offset".

e buffer is a pointer to the data to be programmed into the flash.

e size is the number of bytes to be programmed into the flash.

Return Value: Is the number of bytes programmed sucessfully.

Example call
uintl6é size_of _programmed_data;

size_of _programmed_data = flash_write(base_address, offset,
buffer_ptr, size);

17.2.3. flash_read

Reads data from flash memory.

To read from Flash - memory

e Calluinti6 flash_write (uint32 base_address, uint32 offset,
uchar8 * buffer, uintlé size) where
e base_address is the start address of the section of flash to be read.
e Offset is the start address of memory that is read is "base_address +
offset".
e buffer is a pointer to buffer where data is read.
e size is the number of bytes to be read from the flash.

Return Value: Is the number of bytes read successfully.

Example call
uintl6é size_of _read_data;

size_of _read_data = flash_read(base_address, offset, buffer_ptr,
size);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 98 of 112

http://www.parker.com/

Header Link to TOC

17.2.4. flash_erase_sector

Erases a flash sector. Note there are some areas of flash that the application may
not be allowed to erase (such as the bootblock).

To erase the Flash — memory sector

e Call boolean flash_erase _sector (uint32 base address, uint32
sector) where

e base_address Not used. For backwards combatibility.
e sector The sector to be erased.

Return Value:

o TRUE - success.
o FALSE - failure.

Example call
if(TRUE == flash_erase_sector(base_address, sector))
{
// Successfully erases the flash sector.
}

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 99 of 112

http://www.parker.com/

Header Link to TOC

18. EEPROM Emulation

18.1. Overview

CMO0711 Data Flash memory has hardware support for EEPROM emulation. This
feature allows you to read, write and delete data records without the need to
erase the memory. Emulation can be used for example to store calibration data or
user configurations. Frequent writing is not advised due to flash memory wear
out.

This section provides you information how to:
- Initialize the emulation.

- Write records.

- Read records.

- Delete records.

18.2. Initialize the Emulation

Emulation has 16368 bytes of effective memory space for storing records. Each
record takes up (16 + data length) bytes of memory rounded up to next 16 bytes.
So the minimum record size is 32 bytes and maximum number of such records is
511.

NOTICE

It is not recommended to use all available space as this will require more frequent
flash block swapping. Swapping is very expensive performance-wise and will corrupt
flash quickly if written frequently.

18.2.1. eeprom_init

Initializes EEPROM emulation system.

If necessary, creates or repairs the memory structures used for EEPROM emulation.
Fills the record data look-up table with pointers to valid records; null pointers are
written to look-up table for IDs that do not have a saved record.

Parameters

Maximum number of records in the look-up table (1 -

max_records 511).

Return value: char8
e EEPROM_OK: Init OK.
¢ EEPROM_FLASH ERROR: Flash handling function returned an error,
couldn't finish initialization.

Example Call:
char8 err;

err = eeprom_init(100);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 100 of 112

http://www.parker.com/

Header Link to TOC

18.3. Write Records

Writing is done in arbitrary size records. Each record will take space 16 bytes +
data size rounded up to next 16 bytes. So a record with a single char and a 16
byte string, both consume 32 bytes space.

A record with the same id can be written again without the need to delete it. Old
records are kept in the memory as long as there is free space left. The latest
record is set as active. You should always write the same type of data to a
specific record id. Or at least a type with the same size.

k%) NOTICE

When space is eventually used up, the active emulation block is swapped and old
records are permanently erased. This can take several hundreds of milliseconds and
will wear out the flash memory. Therefore, it is not recommended to use all space
and you should minimize write times.

18.3.1. eeprom_WriteRecord

Saves given data to non-volatile memory.

The new data replaces any existing data with the same record ID (look-up table is
updated). If necessary, flash block swap is performed during the write (in which case
look-up table pointers to all existing records are updated).

Parameters

A label for identifying the stored data. Use values from
zero to (max_records - 1.

data_length Number of data bytes in the record

Pointer to data that will be
written inside the record.

record_id

*data

Return value: char8
e EEPROM_OK: Success.
o EEPROM_INVALID_PARAMETER: Too large value for record_id given or
null pointer specified for data.
e EEPROM_OUT_OF_MEMORY: EEPROM full or record is too big.

Example Call:
char8 err;
uint32 data = 123456789;

err = eeprom_WriteRecord(0, sizeof(uint32), &data);

Example Call:
char8 err;
some_struct_type data;
data.x = 10;
data.y = 20;

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 101 of 112

http://www.parker.com/

Header Link to TOC

data.z = 30;

err = eeprom_WriteRecord(l, sizeof(some_struct_type), &data);

18.4. Read Records

Read function returns a void pointer to the constant record data. Null pointer is
returned if data is not found.

18.4.1. eeprom_GetRecord

Retrieves pointer to an existing data record.

Parameters

record_id Data identifier for the record.

Return value: void*
e NULL: Data not found.
o Pointer to data record. Cast to expected type.

Example Call:
const uint32* rec_ptr;
uint32 data;
rec_ptr = (const uint32*)eeprom_GetRecord(0);
if (rec_ptr)
{

data = *rec_ptr;

Example Call:
const some_struct_type* rec_ptr;
some_struct_type data;
rec_ptr = (const some_struct_type*)eeprom_GetRecord(1);
if (rec_ptr)
{

memcpy(&data, rec_ptr, sizeof(some_struct_type));

18.5. Delete Records

Delete function removes a single record without the need to erase the whole
block. It will also look for older references for the given record. If one is found, it is
restored and set as the active one.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 102 of 112

http://www.parker.com/

Header Link to TOC

18.5.1. eeprom_DeleteRecord

Deletes an existing data record and restores previous record of the same id, if any.
Call repeatedly to delete all references to a record.

Parameters
record_id Data identifier for the record.

Return value: char8
e EEPROM_OK: Record deleted.
e EEPROM_NO_DATA FOUND: There is ho saved record to delete.
o EEPROM_INVALID_PARAMETER: Too large value for record_id.
o EEPROM_FLASH_ERROR: Flash writing failed - system may be unstable
now!

Example Call:
char8 err;

err = eeprom_DeleteRecord(0);

Example Call:
char8 err;
do {
// Delete all references to record 1
err = eeprom_DeleteRecord(1);

while (err == EEPROM_OK);

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 103 of 112

http://www.parker.com/

Header Link to TOC

19. Cyclic Redundancy Check

The cyclic redundancy check (CRC) is an error-detecting code to detect accidental
changes to raw data. Short check value is attached to data blocks, based on the
remainder of a polynomial division of their contents. Calculation is repeated, while
the data is to be retrieved and evaluation can be made to see whether the retrieved
data is still usable.

19.1. Overview

The CRC module services in CM0711 SW Platform Framework provides a
functionality for calculating a 16-bit CRC on a block of data using the CRC-
CCITT Poly: 0xFOBS.

File Reference: pfw_crc.h
#include "stypes.h"

19.2. CRC Functions

There is 3 functions under this service
0 CRC Calculation
0 Inserting CRC
0 CRCresult evaluation

r\il') NOTICE

CRC_NOT_COMPLIMENTED May have potential issues when the buffer size
changes and the new bytes are 0's.

CRC_COMPLIMENTED (Preferred to use this)

19.2.1.1. crcl16_calculation

Calculates a 16-bit CRC for the memory space pointed to by the data parameter
that is num_bytes in size.

To calculate CRC

e uintl6 crcl6_calculation (CRC_Void _Ptr data, uint32 num_bytes
) where

e data is a pointer to the beginning of the data range.
e num_bytes is the size of the data range.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 104 of 112

http://www.parker.com/

Header Link to TOC

19.2.1.2.

19.2.1.3.

Return Value: 16- bit CRC

Example Call:

crc = crcl6_calculation(data_array, size of _data);

insert_crc

This function attach a 16-bit CRC to a data block. The routine will only calculate
the CRC on the (size-2) as the last 2 bytes are used to store the CRC (LSB first).

To Insert CRC:

e Call boolean insert_crc (CRC_Void_Ptr buffer, uint32
buffer_size, CRC_Complimented complimented) where

e buffer is a pointer to data buffer.

e buffer_size is the size of data buffer.

o complimented is the flag indicating if the 1's complimented CRC is to
be used.

Return Value:
* TRUE indicates success
* FALSE indicates failure

Example Call:
if (insert_crc(data_array, size_of _data, CRC_NOT_COMPLIMENTED))

{

// CRC is inserted sucessfully.
}Returns

TRUE;
b

is_crc_ok

Checks a data block for a valid CRC. This assumes that the 16-bit CRC is in the
last 2 bytes of the data block in LSB first.

To evaluate CRC result

e Call boolean is_crc_ok (CRC_Void_Ptr buffer, uint32
buffer_size, CRC_Complimented complimented) where

e data -referto
e Table 4: Parameters by Library for details.
e buffer is a pointer to data buffer.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 105 of 112

http://www.parker.com/

Header Link to TOC

e buffer_size Iis the size of buffer (including crc).
e complimented is the flag indicating if the crc in the buffer is the 1's
compliment.

Return Value:
» TRUE indicates that CRC passes
* FALSE otherwise

Example Call:
if (is_crc_ok(data_array, size of _data, CRC_NOT_COMPLIMENTED))

{
// CRC is ok.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 106 of 112

http://www.parker.com/

Header Link to TOC

20. Application Parameter Table Support

20.1.1.1.

20.1.1.2.

There are three functions in this service to provide means to ask version, build
and part number of application parameter table.

File references:
¢ hw_interface.h
e hw_user.h

get_application_pararmeter_table_version

This function check the checksum and if it passes, it returns the application
parameter table version stored in specific memory address — see chapter 8.2
Fixed addresses for more information.

To check this info

e« Call uintl6 get_application_pararmeter_table version (void)

Return Value:
e Application parameter table version information

e Otherwise - returns OxFFFF, when application parameter table version
information is not available

Example Call:

uintl6é get_application_pararmeter_table_version(void)

uintl6é version_number = OXFFFF;
#ifdef INCLUDE_APPLICATION_PARAMETER_TABLE_SUPPORT
if (verify_application_parameter_table_checksum())

{

version_number = *Application_Parameter_Table Version_Ptr;

T
#endi

return version_number;

get_application_pararmeter_table_build_number

This function check the checksum and if it passes, it returns the application
parameter table build number —information stored in specific memory address —
see chapter 8.2 Fixed addresses for more information.

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved.

Page 107 of 112

http://www.parker.com/

Header Link to TOC

To check this info

e Call uchar8 get_application_pararmeter_table build _number (void)

Return Value:
e Application parameter table build number- information

e Otherwise - returns OxFF, when application parameter table build number-
information is not available

Example Call:

uchar8 get_application_pararmeter_table_build_number(void)

{

uchar8 build_number = OxFF;
#ifdef INCLUDE_APPLICATION_PARAMETER_TABLE_SUPPORT

if (verify_application_parameter_table_checksum())

{

build_number = *Application_Parameter_Table_Build_Number_Ptr;

T
#endif

return build_number;

20.1.1.3. get_application_pararmeter_table_part_number

This function check the checksum and if it passes, it returns the application
parameter table part number —information stored in specific memory address —
see chapter 8.2 Fixed addresses for more information.

To check this info

e Call uint32 get_application_pararmeter_table part_number (void)

Return Value:
e Application parameter table build number- information

o Otherwise — returns OXFFFFFFFF, when application parameter table build
number- information is not available

Example Call:

uint32 get_application_pararmeter_table_part_number(void)

{

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 108 of 112

http://www.parker.com/

Header Link to TOC

uint32 part_number = OxXFFFFFFFF;
#ifdef INCLUDE_APPLICATION_PARAMETER_TABLE_SUPPORT
if (verify_application_parameter_table_checksum())

{

part_number = *Application_Parameter_Table_Part_Number_Ptr;
}
#endif

return part_number;

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 109 of 112

http://www.parker.com/

Header Link to TOC

21. Application Debug and Diagnostics
Aupport

This chapter lists some debug and diagnostics services which are available for
CMO0711 applications.

21.1. max_stack _usage

Returns the maximum percentage of available stack that has been in use. E.g. 50
indicates that at some point since reset, 50% of the available stack has been in
use.

Header file to include: stack_usage.h

To get the maximum stack usage percentage

e Calluint8 max_stack_usage (void)

Return Value:
e stack usage percent: 1 (1%)

Example call
uint8 usage_percentage;

usage_percentage = max_stack _usage();

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 110 of 112

http://www.parker.com/

Header Link to TOC

22. Frequently Asked Questions

Q: Can | access a JTAG port for software debugging purposes?

The CM0O711 has JTAG port that is not accessible from outside its
enclosure in normal serial production units. However, it is
possible to order special development units from Parker.

Q: Can | develop PC applications for CM0711 communication using DLA?

Yes. The DLA supports RP1210 which is an industry standard. PC
applications can be written to interface via RP1210 to the DLA.
Reference Instruction book for USB-DLA on Parker website for
detailed information.

Q: I have shared variable between a thread and CAN rx table. Do | need to lock it
somehow?

No. Received data is passed from CAN rx interrupt to the
corresponding stack. The stack gets processed in an internal
thread. Since CMO711 does not support parallel threads, the
internal thread and your own thread cannot interrupt each other
and there is no conflict.

Q: Why isn’t there any main function in template project?

Main function is encapsulated inside the bootblock. It initializes
the system, invokes ap_init() and then enters main loop to
schedule running threads. That is why you need to fork at least
one thread in ap_init().

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 111 of 112

http://www.parker.com/

Header Link to TOC

23. Feedback

In order to ensure the manual meets your needs, we need your feedback. Please
answer the questions on this page and send the page to Parker Hannifin
Manufacturing Finland Oy.

Contact information:

Parker Hannifin Manufacturing Finland Oy
Lepisténkatu 10,

FI-30100 Forssa

Finland

Email: support.forssa@parker.com

1. What is your comfort level with the subject matter?
Beginner — Intermediate — Advanced — Professional

2. How would you rate the quality of this manual?
1 (low) — 2 — 3 — 4 — 5 (high)

3. What do you like about this manual?

4. What do you dislike about this manual?

Copyright 2011-2017 © Parker-Hannifin Corporation. All rights reserved. Page 112 of 112

http://www.parker.com/

	Table of Content
	1. Introduction
	1.1. Safety Symbols
	1.2. General

	2. CM0711 Software Development System
	3. Description of CM0711 Software Development Kit
	3.1. Software Development Kit Ordering Number
	3.2. Documentation
	3.3. CM0711 Platform Framework (PFW)
	3.4. Application
	3.4.1. Application template
	3.4.2. User application

	3.5. Integrated Development Environment (IDE)
	3.6. Software Development Tools
	3.7. Bootblock

	4. Wire Harnesses
	5. Development Environment Setup Procedure
	6. General Info for Application Development with CM0711 SDK
	6.1. Services Provided by CM0711 SDK
	6.2. Header Files
	6.3. Manual Conventions
	6.3.1. Code references
	6.3.2. Code examples

	7. Mandatory Steps to Create an Application
	7.1. Procedure

	8. Product-Specific Information
	8.1. CM0711 Memory Map
	8.2. Fixed Addresses
	8.3. CM0711 Software Parameters
	8.4. Building and Compiling your Project
	8.4.1. Making your application compatible with the Parker Flash Loader Tool
	8.4.1.1. Including reprogram_object in your receive table
	8.4.1.2. Defining application callback functions
	8.4.1.2.1. change_operating_mode_requested
	8.4.1.2.2. version_numbers_requested
	8.4.1.2.3. send_bootblock_reset_info
	8.4.1.2.4. custom_J1939_EF00_ handler

	8.4.1.3. Including version_numbers in your transmit table

	8.4.2. Building an object file (Parker Software File)
	8.4.3. Transferring a VSF to the CM0711 with the Parker Flash Loader Tool

	9. System Library
	9.1. Services
	9.1.1. Initializing the application
	9.1.1.1. ap_init

	9.1.2. Determining time
	9.1.2.1. ticks
	9.1.2.2. ticks_us

	10. Threads Library
	10.1. Types of Threads
	10.2. How to Write Threads
	10.2.1. Services
	10.2.2. Creating a thread
	10.2.2.1. fork_thread

	10.2.3. Terminating a thread
	10.2.3.1. exit_thread
	10.2.3.2. kill_thread

	10.2.4. Changing the period for a thread
	10.2.4.1. thread_period
	10.2.4.2. Changing a thread parameter
	10.2.4.3. thread_parameter

	11. Outputs Library
	11.1. Services
	11.1.1. Controlling the Pulse Width Modulation (PWM) of Outputs
	11.1.1.1. set_output_PWM_frequency
	11.1.1.2. set_output_PWM_duty_cycle

	11.1.2. Controlling an Output Digitally
	11.1.2.1. turn_output_on
	11.1.2.2. turn_output_off

	11.1.3. Determining the State of an Output Channel
	11.1.3.1. get_output_state

	11.2. Output Options
	11.2.1. Output_options_t

	11.3. Output Critical Fault Inhibit Disable
	11.3.1. output_critical_fault_inhibit_disabled

	12. Inputs Library
	12.1. Services
	12.1.1. Determining the value of digital inputs
	12.1.1.1. get_din_value
	12.1.1.2. read_din_value

	12.1.2. Determining the value of frequency inputs
	12.1.2.1. get_fin_value
	12.1.2.2. read_fin_value
	12.1.2.3. get_fin_period
	12.1.2.4. read_fin_period
	12.1.2.5. get_fin_count
	12.1.2.6. read_fin_count
	12.1.2.7. get_fin_duty_cycle
	12.1.2.8. read_fin_duty_cycle

	12.1.3. Determining the value of analog inputs
	12.1.3.1. get_buffered_ain_value
	12.1.3.2. get_realtime_ain_value
	12.1.3.3. read_buffered_ain_value
	12.1.3.4. read_realtime_ain_value

	12.2. Input Options
	12.2.1. set_din_option
	12.2.2. set_ain_option
	12.2.3. set_fin_option

	13. Communication Media
	13.1. Services
	13.1.1. start_CAN
	13.1.2. initiate_transmission
	13.1.3. insert_receive_CAN_message
	13.1.4. set_CAN_offline_mode
	13.1.5. change_CAN_bit_rate

	14. J1939 Stack Library
	14.1. Overview for Using the J1939 Stack Library
	14.2. Initializing the Stack
	14.3. Creating J1939 Tables
	14.3.1. Creating a transmit table
	14.3.2. Creating a receive table
	14.3.2.1. Defining receive functions
	14.3.2.2. Creating a receive table

	14.4. Services
	14.4.1. Managing the J1939
	14.4.1.1. j1939_initialize_stack
	14.4.1.2. j1939_claim_address
	14.4.1.3. j1939_get_status
	14.4.1.4. j1939_get_source_address
	14.4.1.5. j1939_send_request

	14.4.2. Transmitting messages
	14.4.2.1. Transmitting messages automatically
	14.4.2.2. Transmitting messages manually (J1939_send)

	14.4.3. Updating data in automatically transmitted messages
	14.4.3.1. J1939_updating_message
	14.4.3.2. J1939_finished_updating_message

	14.4.4. Receiving messages
	14.4.4.1. J1939_register_receive_all_object

	14.4.5. Administration message setting
	14.4.5.1. j1939_set_admin_msg_on_transmit
	14.4.5.2. j1939_set_admin_msg_on_transmit_complete

	15. Generic CAN Stack
	15.1. Overview for Using the Generic CAN Stack
	15.2. Initializing the Generic CAN Stack
	15.3. Creating STD Tables
	15.3.1. Creating a transmit table for standard messages
	15.3.2. Creating a receive table
	15.3.2.1. Defining receive functions
	15.3.2.2. Creating a receive table

	15.4. Services
	15.4.1. init_can_stack
	15.4.2. Transmitting messages
	15.4.2.1. Transmitting messages automatically
	15.4.2.2. Transmitting messages manually (send_can_message)

	15.4.3. Updating data in automatically transmitted messages
	15.4.3.1. updating_can_message
	15.4.3.2. finished_updating_can_message

	16. Input Manager
	16.1. Overview
	16.2. Creating an Input Table
	16.3. Initializing the Input Manager
	16.4. Obtaining Sampled, Filtered, and Converted Data
	16.4.1. Getting input data by referring to a data storage location
	16.4.2. Getting input data by calling input_get_value
	16.4.3. Getting input data by using a specific service
	16.4.3.1. input_get_raw_value
	16.4.3.2. input_get_filtered_value
	16.4.3.3. input_get_converted_value

	16.4.4. Commonly used read, filter and conversion services
	16.4.4.1. read_bit_uchar8
	16.4.4.2. read_bit_uint16, read_bit_uint32
	16.4.4.3. read_buf_uchar8
	16.4.4.4. read_buf_uint16, read_buf_uint32
	16.4.4.5. din_debounce_filter
	16.4.4.6. running_average
	16.4.4.7. convert_linear_sint32

	17. FLASH
	17.1. Overview
	17.2. Flash Functions
	17.2.1. flash_init
	17.2.2. flash_write
	17.2.3. flash_read
	17.2.4. flash_erase_sector

	18. EEPROM Emulation
	18.1. Overview
	18.2. Initialize the Emulation
	18.2.1. eeprom_init

	18.3. Write Records
	18.3.1. eeprom_WriteRecord

	18.4. Read Records
	18.4.1. eeprom_GetRecord

	18.5. Delete Records
	18.5.1. eeprom_DeleteRecord

	19. Cyclic Redundancy Check
	19.1. Overview
	19.2. CRC Functions
	19.2.1.1. crc16_calculation
	19.2.1.2. insert_crc
	19.2.1.3. is_crc_ok

	20. Application Parameter Table Support
	20.1.1.1. get_application_pararmeter_table_version
	20.1.1.2. get_application_pararmeter_table_build_number
	20.1.1.3. get_application_pararmeter_table_part_number

	21. Application Debug and Diagnostics Aupport
	21.1. max_stack_usage

	22. Frequently Asked Questions
	23. Feedback

